New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl6eqel | GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl6eqel.1 | ⊢ (φ → A = B) |
syl6eqel.2 | ⊢ B ∈ C |
Ref | Expression |
---|---|
syl6eqel | ⊢ (φ → A ∈ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eqel.1 | . 2 ⊢ (φ → A = B) | |
2 | syl6eqel.2 | . . 3 ⊢ B ∈ C | |
3 | 2 | a1i 10 | . 2 ⊢ (φ → B ∈ C) |
4 | 1, 3 | eqeltrd 2427 | 1 ⊢ (φ → A ∈ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: syl6eqelr 2442 snex 4112 sikss1c1c 4268 ins2kss 4280 ins3kss 4281 iotaex 4357 eladdc 4399 ssfin 4471 f0cli 5419 elimdelov 5574 ndmovcl 5615 brfns 5834 muccl 6133 ncaddccl 6145 ceclb 6184 cet 6235 nclenn 6250 nchoicelem12 6301 nchoicelem17 6306 nchoicelem18 6307 nchoicelem19 6308 |
Copyright terms: Public domain | W3C validator |