NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl6eqel GIF version

Theorem syl6eqel 2441
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
syl6eqel.1 (φA = B)
syl6eqel.2 B C
Assertion
Ref Expression
syl6eqel (φA C)

Proof of Theorem syl6eqel
StepHypRef Expression
1 syl6eqel.1 . 2 (φA = B)
2 syl6eqel.2 . . 3 B C
32a1i 10 . 2 (φB C)
41, 3eqeltrd 2427 1 (φA C)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   wcel 1710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346  df-clel 2349
This theorem is referenced by:  syl6eqelr  2442  snex  4111  sikss1c1c  4267  ins2kss  4279  ins3kss  4280  iotaex  4356  eladdc  4398  ssfin  4470  f0cli  5418  elimdelov  5573  ndmovcl  5614  brfns  5833  muccl  6132  ncaddccl  6144  ceclb  6183  cet  6234  nclenn  6249  nchoicelem12  6300  nchoicelem17  6305  nchoicelem18  6306  nchoicelem19  6307
  Copyright terms: Public domain W3C validator