NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elimdelov GIF version

Theorem elimdelov 5574
Description: Eliminate a hypothesis which is a predicate expressing membership in the result of an operator (deduction version). (Contributed by Paul Chapman, 25-Mar-2008.)
Hypotheses
Ref Expression
elimdelov.1 (φC (AFB))
elimdelov.2 Z (XFY)
Assertion
Ref Expression
elimdelov if(φ, C, Z) ( if(φ, A, X)F if(φ, B, Y))

Proof of Theorem elimdelov
StepHypRef Expression
1 iftrue 3669 . . . 4 (φ → if(φ, C, Z) = C)
2 elimdelov.1 . . . 4 (φC (AFB))
31, 2eqeltrd 2427 . . 3 (φ → if(φ, C, Z) (AFB))
4 iftrue 3669 . . . 4 (φ → if(φ, A, X) = A)
5 iftrue 3669 . . . 4 (φ → if(φ, B, Y) = B)
64, 5oveq12d 5541 . . 3 (φ → ( if(φ, A, X)F if(φ, B, Y)) = (AFB))
73, 6eleqtrrd 2430 . 2 (φ → if(φ, C, Z) ( if(φ, A, X)F if(φ, B, Y)))
8 iffalse 3670 . . . 4 φ → if(φ, C, Z) = Z)
9 elimdelov.2 . . . 4 Z (XFY)
108, 9syl6eqel 2441 . . 3 φ → if(φ, C, Z) (XFY))
11 iffalse 3670 . . . 4 φ → if(φ, A, X) = X)
12 iffalse 3670 . . . 4 φ → if(φ, B, Y) = Y)
1311, 12oveq12d 5541 . . 3 φ → ( if(φ, A, X)F if(φ, B, Y)) = (XFY))
1410, 13eleqtrrd 2430 . 2 φ → if(φ, C, Z) ( if(φ, A, X)F if(φ, B, Y)))
157, 14pm2.61i 156 1 if(φ, C, Z) ( if(φ, A, X)F if(φ, B, Y))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wcel 1710   ifcif 3663  (class class class)co 5526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-br 4641  df-fv 4796  df-ov 5527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator