Proof of Theorem ud3lem1d
Step | Hyp | Ref
| Expression |
1 | | df-i3 46 |
. . 3
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
2 | | ud3lem1c 568 |
. . 3
((a →3 b)⊥ ∪ (b →3 a)) = (a ∪
b⊥ ) |
3 | 1, 2 | 2an 79 |
. 2
((a →3 b) ∩ ((a
→3 b)⊥
∪ (b →3 a))) = ((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ (a
∪ b⊥
)) |
4 | | comor1 461 |
. . . . . . 7
(a ∪ b⊥ ) C a |
5 | 4 | comcom2 183 |
. . . . . 6
(a ∪ b⊥ ) C a⊥ |
6 | | comor2 462 |
. . . . . . 7
(a ∪ b⊥ ) C b⊥ |
7 | 6 | comcom7 460 |
. . . . . 6
(a ∪ b⊥ ) C b |
8 | 5, 7 | com2an 484 |
. . . . 5
(a ∪ b⊥ ) C (a⊥ ∩ b) |
9 | 5, 6 | com2an 484 |
. . . . 5
(a ∪ b⊥ ) C (a⊥ ∩ b⊥ ) |
10 | 8, 9 | com2or 483 |
. . . 4
(a ∪ b⊥ ) C ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
11 | 5, 7 | com2or 483 |
. . . . 5
(a ∪ b⊥ ) C (a⊥ ∪ b) |
12 | 4, 11 | com2an 484 |
. . . 4
(a ∪ b⊥ ) C (a ∩ (a⊥ ∪ b)) |
13 | 10, 12 | fh1r 473 |
. . 3
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ (a
∪ b⊥ )) = ((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ b⊥ )) ∪ ((a ∩ (a⊥ ∪ b)) ∩ (a
∪ b⊥
))) |
14 | 8, 9 | fh1r 473 |
. . . . 5
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ b⊥ )) = (((a⊥ ∩ b) ∩ (a
∪ b⊥ )) ∪
((a⊥ ∩ b⊥ ) ∩ (a ∪ b⊥ ))) |
15 | | an32 83 |
. . . . . 6
((a ∩ (a⊥ ∪ b)) ∩ (a
∪ b⊥ )) = ((a ∩ (a ∪
b⊥ )) ∩ (a⊥ ∪ b)) |
16 | | anabs 121 |
. . . . . . 7
(a ∩ (a ∪ b⊥ )) = a |
17 | 16 | ran 78 |
. . . . . 6
((a ∩ (a ∪ b⊥ )) ∩ (a⊥ ∪ b)) = (a ∩
(a⊥ ∪ b)) |
18 | 15, 17 | ax-r2 36 |
. . . . 5
((a ∩ (a⊥ ∪ b)) ∩ (a
∪ b⊥ )) = (a ∩ (a⊥ ∪ b)) |
19 | 14, 18 | 2or 72 |
. . . 4
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ b⊥ )) ∪ ((a ∩ (a⊥ ∪ b)) ∩ (a
∪ b⊥ ))) =
((((a⊥ ∩ b) ∩ (a
∪ b⊥ )) ∪
((a⊥ ∩ b⊥ ) ∩ (a ∪ b⊥ ))) ∪ (a ∩ (a⊥ ∪ b))) |
20 | | ancom 74 |
. . . . . . . 8
((a⊥ ∩ b) ∩ (a
∪ b⊥ )) = ((a ∪ b⊥ ) ∩ (a⊥ ∩ b)) |
21 | | anor2 89 |
. . . . . . . . . 10
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
22 | 21 | lan 77 |
. . . . . . . . 9
((a ∪ b⊥ ) ∩ (a⊥ ∩ b)) = ((a ∪
b⊥ ) ∩ (a ∪ b⊥ )⊥
) |
23 | | dff 101 |
. . . . . . . . . 10
0 = ((a ∪ b⊥ ) ∩ (a ∪ b⊥ )⊥
) |
24 | 23 | ax-r1 35 |
. . . . . . . . 9
((a ∪ b⊥ ) ∩ (a ∪ b⊥ )⊥ ) =
0 |
25 | 22, 24 | ax-r2 36 |
. . . . . . . 8
((a ∪ b⊥ ) ∩ (a⊥ ∩ b)) = 0 |
26 | 20, 25 | ax-r2 36 |
. . . . . . 7
((a⊥ ∩ b) ∩ (a
∪ b⊥ )) =
0 |
27 | | lear 161 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) ≤ b⊥ |
28 | | leor 159 |
. . . . . . . . 9
b⊥ ≤ (a ∪ b⊥ ) |
29 | 27, 28 | letr 137 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) ≤ (a ∪ b⊥ ) |
30 | 29 | df2le2 136 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∩ (a ∪ b⊥ )) = (a⊥ ∩ b⊥ ) |
31 | 26, 30 | 2or 72 |
. . . . . 6
(((a⊥ ∩
b) ∩ (a ∪ b⊥ )) ∪ ((a⊥ ∩ b⊥ ) ∩ (a ∪ b⊥ ))) = (0 ∪ (a⊥ ∩ b⊥ )) |
32 | | or0r 103 |
. . . . . 6
(0 ∪ (a⊥ ∩
b⊥ )) = (a⊥ ∩ b⊥ ) |
33 | 31, 32 | ax-r2 36 |
. . . . 5
(((a⊥ ∩
b) ∩ (a ∪ b⊥ )) ∪ ((a⊥ ∩ b⊥ ) ∩ (a ∪ b⊥ ))) = (a⊥ ∩ b⊥ ) |
34 | 33 | ax-r5 38 |
. . . 4
((((a⊥ ∩
b) ∩ (a ∪ b⊥ )) ∪ ((a⊥ ∩ b⊥ ) ∩ (a ∪ b⊥ ))) ∪ (a ∩ (a⊥ ∪ b))) = ((a⊥ ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b))) |
35 | 19, 34 | ax-r2 36 |
. . 3
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ b⊥ )) ∪ ((a ∩ (a⊥ ∪ b)) ∩ (a
∪ b⊥ ))) = ((a⊥ ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b))) |
36 | 13, 35 | ax-r2 36 |
. 2
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ (a
∪ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b))) |
37 | 3, 36 | ax-r2 36 |
1
((a →3 b) ∩ ((a
→3 b)⊥
∪ (b →3 a))) = ((a⊥ ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b))) |