HomeHome Intuitionistic Logic Explorer
Theorem List (p. 40 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3901-4000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempwpwssunieq 3901* The class of sets whose union is equal to a given class is included in the double power class of that class. (Contributed by BJ, 29-Apr-2021.)
 |- 
 { x  |  U. x  =  A }  C_ 
 ~P ~P A
 
Theoremelpwuni 3902 Relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
 |-  ( B  e.  A  ->  ( A  C_  ~P B  <->  U. A  =  B ) )
 
Theoremiinpw 3903* The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
 |- 
 ~P |^| A  =  |^|_ x  e.  A  ~P x
 
Theoremiunpwss 3904* Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.)
 |-  U_ x  e.  A  ~P x  C_  ~P U. A
 
Theoremrintm 3905* Relative intersection of an inhabited class. (Contributed by Jim Kingdon, 19-Aug-2018.)
 |-  ( ( X  C_  ~P A  /\  E. x  x  e.  X )  ->  ( A  i^i  |^| X )  =  |^| X )
 
2.1.21  Disjointness
 
Syntaxwdisj 3906 Extend wff notation to include the statement that a family of classes  B (
x ), for  x  e.  A, is a disjoint family.
 wff Disj 
 x  e.  A  B
 
Definitiondf-disj 3907* A collection of classes  B ( x ) is disjoint when for each element  y, it is in  B ( x ) for at most one  x. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by NM, 16-Jun-2017.)
 |-  (Disj  x  e.  A  B 
 <-> 
 A. y E* x  e.  A  y  e.  B )
 
Theoremdfdisj2 3908* Alternate definition for disjoint classes. (Contributed by NM, 17-Jun-2017.)
 |-  (Disj  x  e.  A  B 
 <-> 
 A. y E* x ( x  e.  A  /\  y  e.  B ) )
 
Theoremdisjss2 3909 If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
 |-  ( A. x  e.  A  B  C_  C  ->  (Disj  x  e.  A  C  -> Disj  x  e.  A  B ) )
 
Theoremdisjeq2 3910 Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
 |-  ( A. x  e.  A  B  =  C  ->  (Disj  x  e.  A  B 
 <-> Disj  x  e.  A  C ) )
 
Theoremdisjeq2dv 3911* Equality deduction for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  (Disj  x  e.  A  B  <-> Disj  x  e.  A  C ) )
 
Theoremdisjss1 3912* A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
 |-  ( A  C_  B  ->  (Disj  x  e.  B  C  -> Disj  x  e.  A  C ) )
 
Theoremdisjeq1 3913* Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
 |-  ( A  =  B  ->  (Disj  x  e.  A  C 
 <-> Disj  x  e.  B  C ) )
 
Theoremdisjeq1d 3914* Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  (Disj  x  e.  A  C  <-> Disj  x  e.  B  C ) )
 
Theoremdisjeq12d 3915* Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  (Disj  x  e.  A  C  <-> Disj  x  e.  B  D ) )
 
Theoremcbvdisj 3916* Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
 |-  F/_ y B   &    |-  F/_ x C   &    |-  ( x  =  y  ->  B  =  C )   =>    |-  (Disj  x  e.  A  B  <-> Disj  y  e.  A  C )
 
Theoremcbvdisjv 3917* Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016.)
 |-  ( x  =  y 
 ->  B  =  C )   =>    |-  (Disj  x  e.  A  B  <-> Disj  y  e.  A  C )
 
Theoremnfdisjv 3918* Bound-variable hypothesis builder for disjoint collection. (Contributed by Jim Kingdon, 19-Aug-2018.)
 |-  F/_ y A   &    |-  F/_ y B   =>    |-  F/ yDisj  x  e.  A  B
 
Theoremnfdisj1 3919 Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
 |- 
 F/ xDisj  x  e.  A  B
 
Theoremdisjnim 3920* If a collection  B ( i ) for  i  e.  A is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Jim Kingdon, 6-Oct-2022.)
 |-  ( i  =  j 
 ->  B  =  C )   =>    |-  (Disj  i  e.  A  B  ->  A. i  e.  A  A. j  e.  A  ( i  =/=  j  ->  ( B  i^i  C )  =  (/) ) )
 
Theoremdisjnims 3921* If a collection  B ( i ) for  i  e.  A is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by Jim Kingdon, 7-Oct-2022.)
 |-  (Disj  x  e.  A  B  ->  A. i  e.  A  A. j  e.  A  ( i  =/=  j  ->  ( [_ i  /  x ]_ B  i^i  [_ j  /  x ]_ B )  =  (/) ) )
 
Theoremdisji2 3922* Property of a disjoint collection: if  B ( X )  =  C and  B ( Y )  =  D, and  X  =/=  Y, then  C and  D are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
 |-  ( x  =  X  ->  B  =  C )   &    |-  ( x  =  Y  ->  B  =  D )   =>    |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A )  /\  X  =/=  Y )  ->  ( C  i^i  D )  =  (/) )
 
Theoreminvdisj 3923* If there is a function  C ( y ) such that  C ( y )  =  x for all  y  e.  B
( x ), then the sets  B ( x ) for distinct  x  e.  A are disjoint. (Contributed by Mario Carneiro, 10-Dec-2016.)
 |-  ( A. x  e.  A  A. y  e.  B  C  =  x 
 -> Disj 
 x  e.  A  B )
 
Theoremdisjiun 3924* A disjoint collection yields disjoint indexed unions for disjoint index sets. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 14-Nov-2016.)
 |-  ( (Disj  x  e.  A  B  /\  ( C 
 C_  A  /\  D  C_  A  /\  ( C  i^i  D )  =  (/) ) )  ->  ( U_ x  e.  C  B  i^i  U_ x  e.  D  B )  =  (/) )
 
Theoremsndisj 3925 Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
 |- Disj  x  e.  A  { x }
 
Theorem0disj 3926 Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
 |- Disj  x  e.  A  (/)
 
Theoremdisjxsn 3927* A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
 |- Disj  x  e.  { A } B
 
Theoremdisjx0 3928 An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
 |- Disj  x  e.  (/)  B
 
2.1.22  Binary relations
 
Syntaxwbr 3929 Extend wff notation to include the general binary relation predicate. Note that the syntax is simply three class symbols in a row. Since binary relations are the only possible wff expressions consisting of three class expressions in a row, the syntax is unambiguous.
 wff  A R B
 
Definitiondf-br 3930 Define a general binary relation. Note that the syntax is simply three class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29 generalized to arbitrary classes. This definition of relations is well-defined, although not very meaningful, when classes  A and/or  B are proper classes (i.e. are not sets). On the other hand, we often find uses for this definition when  R is a proper class (see for example iprc 4807). (Contributed by NM, 31-Dec-1993.)
 |-  ( A R B  <->  <. A ,  B >.  e.  R )
 
Theorembreq 3931 Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.)
 |-  ( R  =  S  ->  ( A R B  <->  A S B ) )
 
Theorembreq1 3932 Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993.)
 |-  ( A  =  B  ->  ( A R C  <->  B R C ) )
 
Theorembreq2 3933 Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993.)
 |-  ( A  =  B  ->  ( C R A  <->  C R B ) )
 
Theorembreq12 3934 Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A R C 
 <->  B R D ) )
 
Theorembreqi 3935 Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.)
 |-  R  =  S   =>    |-  ( A R B 
 <->  A S B )
 
Theorembreq1i 3936 Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
 |-  A  =  B   =>    |-  ( A R C 
 <->  B R C )
 
Theorembreq2i 3937 Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
 |-  A  =  B   =>    |-  ( C R A 
 <->  C R B )
 
Theorembreq12i 3938 Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A R C  <->  B R D )
 
Theorembreq1d 3939 Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A R C  <->  B R C ) )
 
Theorembreqd 3940 Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C A D  <->  C B D ) )
 
Theorembreq2d 3941 Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C R A  <->  C R B ) )
 
Theorembreq12d 3942 Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A R C  <->  B R D ) )
 
Theorembreq123d 3943 Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  R  =  S )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A R C  <->  B S D ) )
 
Theorembreqdi 3944 Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C A D )   =>    |-  ( ph  ->  C B D )
 
Theorembreqan12d 3945 Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ps  ->  C  =  D )   =>    |-  ( ( ph  /\ 
 ps )  ->  ( A R C  <->  B R D ) )
 
Theorembreqan12rd 3946 Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ps  ->  C  =  D )   =>    |-  ( ( ps 
 /\  ph )  ->  ( A R C  <->  B R D ) )
 
Theoremnbrne1 3947 Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
 |-  ( ( A R B  /\  -.  A R C )  ->  B  =/=  C )
 
Theoremnbrne2 3948 Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
 |-  ( ( A R C  /\  -.  B R C )  ->  A  =/=  B )
 
Theoremeqbrtri 3949 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
 |-  A  =  B   &    |-  B R C   =>    |-  A R C
 
Theoremeqbrtrd 3950 Substitution of equal classes into a binary relation. (Contributed by NM, 8-Oct-1999.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theoremeqbrtrri 3951 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
 |-  A  =  B   &    |-  A R C   =>    |-  B R C
 
Theoremeqbrtrrd 3952 Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  A R C )   =>    |-  ( ph  ->  B R C )
 
Theorembreqtri 3953 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
 |-  A R B   &    |-  B  =  C   =>    |-  A R C
 
Theorembreqtrd 3954 Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.)
 |-  ( ph  ->  A R B )   &    |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrri 3955 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
 |-  A R B   &    |-  C  =  B   =>    |-  A R C
 
Theorembreqtrrd 3956 Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.)
 |-  ( ph  ->  A R B )   &    |-  ( ph  ->  C  =  B )   =>    |-  ( ph  ->  A R C )
 
Theorem3brtr3i 3957 Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
 |-  A R B   &    |-  A  =  C   &    |-  B  =  D   =>    |-  C R D
 
Theorem3brtr4i 3958 Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
 |-  A R B   &    |-  C  =  A   &    |-  D  =  B   =>    |-  C R D
 
Theorem3brtr3d 3959 Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.)
 |-  ( ph  ->  A R B )   &    |-  ( ph  ->  A  =  C )   &    |-  ( ph  ->  B  =  D )   =>    |-  ( ph  ->  C R D )
 
Theorem3brtr4d 3960 Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.)
 |-  ( ph  ->  A R B )   &    |-  ( ph  ->  C  =  A )   &    |-  ( ph  ->  D  =  B )   =>    |-  ( ph  ->  C R D )
 
Theorem3brtr3g 3961 Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
 |-  ( ph  ->  A R B )   &    |-  A  =  C   &    |-  B  =  D   =>    |-  ( ph  ->  C R D )
 
Theorem3brtr4g 3962 Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
 |-  ( ph  ->  A R B )   &    |-  C  =  A   &    |-  D  =  B   =>    |-  ( ph  ->  C R D )
 
Theoremeqbrtrid 3963 B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
 |-  A  =  B   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theoremeqbrtrrid 3964 B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.)
 |-  B  =  A   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrid 3965 B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
 |-  A R B   &    |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrrid 3966 B chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
 |-  A R B   &    |-  ( ph  ->  C  =  B )   =>    |-  ( ph  ->  A R C )
 
Theoremeqbrtrdi 3967 A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.)
 |-  ( ph  ->  A  =  B )   &    |-  B R C   =>    |-  ( ph  ->  A R C )
 
Theoremeqbrtrrdi 3968 A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.)
 |-  ( ph  ->  B  =  A )   &    |-  B R C   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrdi 3969 A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
 |-  ( ph  ->  A R B )   &    |-  B  =  C   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrrdi 3970 A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
 |-  ( ph  ->  A R B )   &    |-  C  =  B   =>    |-  ( ph  ->  A R C )
 
Theoremssbrd 3971 Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( C A D  ->  C B D ) )
 
Theoremssbri 3972 Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.)
 |-  A  C_  B   =>    |-  ( C A D  ->  C B D )
 
Theoremnfbrd 3973 Deduction version of bound-variable hypothesis builder nfbr 3974. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x R )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/ x  A R B )
 
Theoremnfbr 3974 Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x R   &    |-  F/_ x B   =>    |- 
 F/ x  A R B
 
Theorembrab1 3975* Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.)
 |-  ( x R A  <->  x  e.  { z  |  z R A }
 )
 
Theorembr0 3976 The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.)
 |- 
 -.  A (/) B
 
Theorembrne0 3977 If two sets are in a binary relation, the relation cannot be empty. In fact, the relation is also inhabited, as seen at brm 3978. (Contributed by Alexander van der Vekens, 7-Jul-2018.)
 |-  ( A R B  ->  R  =/=  (/) )
 
Theorembrm 3978* If two sets are in a binary relation, the relation is inhabited. (Contributed by Jim Kingdon, 31-Dec-2023.)
 |-  ( A R B  ->  E. x  x  e.  R )
 
Theorembrun 3979 The union of two binary relations. (Contributed by NM, 21-Dec-2008.)
 |-  ( A ( R  u.  S ) B  <-> 
 ( A R B  \/  A S B ) )
 
Theorembrin 3980 The intersection of two relations. (Contributed by FL, 7-Oct-2008.)
 |-  ( A ( R  i^i  S ) B  <-> 
 ( A R B  /\  A S B ) )
 
Theorembrdif 3981 The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.)
 |-  ( A ( R 
 \  S ) B  <-> 
 ( A R B  /\  -.  A S B ) )
 
Theoremsbcbrg 3982 Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B [_ A  /  x ]_ R [_ A  /  x ]_ C ) )
 
Theoremsbcbr12g 3983* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B R [_ A  /  x ]_ C ) )
 
Theoremsbcbr1g 3984* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B R C ) )
 
Theoremsbcbr2g 3985* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  B R [_ A  /  x ]_ C ) )
 
Theorembrralrspcev 3986* Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.)
 |-  ( ( B  e.  X  /\  A. y  e.  Y  A R B )  ->  E. x  e.  X  A. y  e.  Y  A R x )
 
Theorembrimralrspcev 3987* Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.)
 |-  ( ( B  e.  X  /\  A. y  e.  Y  ( ( ph  /\  A R B ) 
 ->  ps ) )  ->  E. x  e.  X  A. y  e.  Y  ( ( ph  /\  A R x )  ->  ps )
 )
 
2.1.23  Ordered-pair class abstractions (class builders)
 
Syntaxcopab 3988 Extend class notation to include ordered-pair class abstraction (class builder).
 class  { <. x ,  y >.  |  ph }
 
Syntaxcmpt 3989 Extend the definition of a class to include maps-to notation for defining a function via a rule.
 class  ( x  e.  A  |->  B )
 
Definitiondf-opab 3990* Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually  x and  y are distinct, although the definition doesn't strictly require it. The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by NM, 4-Jul-1994.)
 |- 
 { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y ( z  = 
 <. x ,  y >.  /\  ph ) }
 
Definitiondf-mpt 3991* Define maps-to notation for defining a function via a rule. Read as "the function defined by the map from  x (in 
A) to  B ( x )." The class expression  B is the value of the function at  x and normally contains the variable  x. Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.)
 |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
 
Theoremopabss 3992* The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |- 
 { <. x ,  y >.  |  x R y }  C_  R
 
Theoremopabbid 3993 Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  {
 <. x ,  y >.  |  ps }  =  { <. x ,  y >.  |  ch } )
 
Theoremopabbidv 3994* Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  {
 <. x ,  y >.  |  ps }  =  { <. x ,  y >.  |  ch } )
 
Theoremopabbii 3995 Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.)
 |-  ( ph  <->  ps )   =>    |- 
 { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }
 
Theoremnfopab 3996* Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.)
 |- 
 F/ z ph   =>    |-  F/_ z { <. x ,  y >.  |  ph }
 
Theoremnfopab1 3997 The first abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x { <. x ,  y >.  |  ph }
 
Theoremnfopab2 3998 The second abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ y { <. x ,  y >.  |  ph }
 
Theoremcbvopab 3999* Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.)
 |- 
 F/ z ph   &    |-  F/ w ph   &    |-  F/ x ps   &    |-  F/ y ps   &    |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  w >.  |  ps }
 
Theoremcbvopabv 4000* Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.)
 |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  w >.  |  ps }
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >