ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos12dec GIF version

Theorem cos12dec 11474
Description: Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.)
Assertion
Ref Expression
cos12dec ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴))

Proof of Theorem cos12dec
StepHypRef Expression
1 1re 7765 . . . . . . . . . . 11 1 ∈ ℝ
2 2re 8790 . . . . . . . . . . 11 2 ∈ ℝ
3 iccssre 9738 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 2 ∈ ℝ) → (1[,]2) ⊆ ℝ)
41, 2, 3mp2an 422 . . . . . . . . . 10 (1[,]2) ⊆ ℝ
54sseli 3093 . . . . . . . . 9 (𝐵 ∈ (1[,]2) → 𝐵 ∈ ℝ)
653ad2ant2 1003 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
76recnd 7794 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
84sseli 3093 . . . . . . . . . . 11 (𝐴 ∈ (1[,]2) → 𝐴 ∈ ℝ)
983ad2ant1 1002 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
106, 9resubcld 8143 . . . . . . . . 9 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ)
1110recnd 7794 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℂ)
1211halfcld 8964 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ∈ ℂ)
137, 12subcld 8073 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ∈ ℂ)
1413coscld 11418 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘(𝐵 − ((𝐵𝐴) / 2))) ∈ ℂ)
1512coscld 11418 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵𝐴) / 2)) ∈ ℂ)
1614, 15mulcld 7786 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) ∈ ℂ)
1713sincld 11417 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (sin‘(𝐵 − ((𝐵𝐴) / 2))) ∈ ℂ)
1812sincld 11417 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (sin‘((𝐵𝐴) / 2)) ∈ ℂ)
1917, 18mulcld 7786 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) ∈ ℂ)
2016, 19negsubd 8079 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
2110rehalfcld 8966 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ∈ ℝ)
226, 21resubcld 8143 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ∈ ℝ)
2322resincld 11430 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (sin‘(𝐵 − ((𝐵𝐴) / 2))) ∈ ℝ)
2421resincld 11430 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (sin‘((𝐵𝐴) / 2)) ∈ ℝ)
2523, 24remulcld 7796 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) ∈ ℝ)
2625renegcld 8142 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) ∈ ℝ)
2722recoscld 11431 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘(𝐵 − ((𝐵𝐴) / 2))) ∈ ℝ)
2821recoscld 11431 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵𝐴) / 2)) ∈ ℝ)
2927, 28remulcld 7796 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) ∈ ℝ)
30 0red 7767 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 ∈ ℝ)
311a1i 9 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 1 ∈ ℝ)
3231rehalfcld 8966 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (1 / 2) ∈ ℝ)
33 simp3 983 . . . . . . . . . . . . 13 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
349, 6posdifd 8294 . . . . . . . . . . . . 13 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
3533, 34mpbid 146 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (𝐵𝐴))
36 halfpos2 8950 . . . . . . . . . . . . 13 ((𝐵𝐴) ∈ ℝ → (0 < (𝐵𝐴) ↔ 0 < ((𝐵𝐴) / 2)))
3710, 36syl 14 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (0 < (𝐵𝐴) ↔ 0 < ((𝐵𝐴) / 2)))
3835, 37mpbid 146 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < ((𝐵𝐴) / 2))
39 2rp 9446 . . . . . . . . . . . . 13 2 ∈ ℝ+
4039a1i 9 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 2 ∈ ℝ+)
412a1i 9 . . . . . . . . . . . . . 14 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 2 ∈ ℝ)
421rexri 7823 . . . . . . . . . . . . . . . 16 1 ∈ ℝ*
432rexri 7823 . . . . . . . . . . . . . . . 16 2 ∈ ℝ*
44 iccleub 9714 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ* ∧ 2 ∈ ℝ*𝐵 ∈ (1[,]2)) → 𝐵 ≤ 2)
4542, 43, 44mp3an12 1305 . . . . . . . . . . . . . . 15 (𝐵 ∈ (1[,]2) → 𝐵 ≤ 2)
46453ad2ant2 1003 . . . . . . . . . . . . . 14 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐵 ≤ 2)
47 iccgelb 9715 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ* ∧ 2 ∈ ℝ*𝐴 ∈ (1[,]2)) → 1 ≤ 𝐴)
4842, 43, 47mp3an12 1305 . . . . . . . . . . . . . . 15 (𝐴 ∈ (1[,]2) → 1 ≤ 𝐴)
49483ad2ant1 1002 . . . . . . . . . . . . . 14 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 1 ≤ 𝐴)
506, 31, 41, 9, 46, 49le2subd 8326 . . . . . . . . . . . . 13 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵𝐴) ≤ (2 − 1))
51 2m1e1 8838 . . . . . . . . . . . . 13 (2 − 1) = 1
5250, 51breqtrdi 3969 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵𝐴) ≤ 1)
5310, 31, 40, 52lediv1dd 9542 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ≤ (1 / 2))
5430, 21, 32, 38, 53ltletrd 8185 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (1 / 2))
55 1mhlfehlf 8938 . . . . . . . . . . 11 (1 − (1 / 2)) = (1 / 2)
56 iccgelb 9715 . . . . . . . . . . . . . 14 ((1 ∈ ℝ* ∧ 2 ∈ ℝ*𝐵 ∈ (1[,]2)) → 1 ≤ 𝐵)
5742, 43, 56mp3an12 1305 . . . . . . . . . . . . 13 (𝐵 ∈ (1[,]2) → 1 ≤ 𝐵)
58573ad2ant2 1003 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 1 ≤ 𝐵)
5931, 21, 6, 32, 58, 53le2subd 8326 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (1 − (1 / 2)) ≤ (𝐵 − ((𝐵𝐴) / 2)))
6055, 59eqbrtrrid 3964 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (1 / 2) ≤ (𝐵 − ((𝐵𝐴) / 2)))
6130, 32, 22, 54, 60ltletrd 8185 . . . . . . . . 9 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (𝐵 − ((𝐵𝐴) / 2)))
6230, 21, 38ltled 7881 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 ≤ ((𝐵𝐴) / 2))
636, 30, 41, 21, 46, 62le2subd 8326 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ≤ (2 − 0))
64 2cn 8791 . . . . . . . . . . 11 2 ∈ ℂ
6564subid1i 8034 . . . . . . . . . 10 (2 − 0) = 2
6663, 65breqtrdi 3969 . . . . . . . . 9 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ≤ 2)
67 0xr 7812 . . . . . . . . . 10 0 ∈ ℝ*
68 elioc2 9719 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → ((𝐵 − ((𝐵𝐴) / 2)) ∈ (0(,]2) ↔ ((𝐵 − ((𝐵𝐴) / 2)) ∈ ℝ ∧ 0 < (𝐵 − ((𝐵𝐴) / 2)) ∧ (𝐵 − ((𝐵𝐴) / 2)) ≤ 2)))
6967, 2, 68mp2an 422 . . . . . . . . 9 ((𝐵 − ((𝐵𝐴) / 2)) ∈ (0(,]2) ↔ ((𝐵 − ((𝐵𝐴) / 2)) ∈ ℝ ∧ 0 < (𝐵 − ((𝐵𝐴) / 2)) ∧ (𝐵 − ((𝐵𝐴) / 2)) ≤ 2))
7022, 61, 66, 69syl3anbrc 1165 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ∈ (0(,]2))
71 sin02gt0 11470 . . . . . . . 8 ((𝐵 − ((𝐵𝐴) / 2)) ∈ (0(,]2) → 0 < (sin‘(𝐵 − ((𝐵𝐴) / 2))))
7270, 71syl 14 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (sin‘(𝐵 − ((𝐵𝐴) / 2))))
73 halfre 8933 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
74 halflt1 8937 . . . . . . . . . . . . 13 (1 / 2) < 1
75 1lt2 8889 . . . . . . . . . . . . 13 1 < 2
7673, 1, 2lttri 7868 . . . . . . . . . . . . 13 (((1 / 2) < 1 ∧ 1 < 2) → (1 / 2) < 2)
7774, 75, 76mp2an 422 . . . . . . . . . . . 12 (1 / 2) < 2
7873, 2, 77ltleii 7866 . . . . . . . . . . 11 (1 / 2) ≤ 2
7978a1i 9 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (1 / 2) ≤ 2)
8021, 32, 41, 53, 79letrd 7886 . . . . . . . . 9 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ≤ 2)
81 elioc2 9719 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (((𝐵𝐴) / 2) ∈ (0(,]2) ↔ (((𝐵𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵𝐴) / 2) ∧ ((𝐵𝐴) / 2) ≤ 2)))
8267, 2, 81mp2an 422 . . . . . . . . 9 (((𝐵𝐴) / 2) ∈ (0(,]2) ↔ (((𝐵𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵𝐴) / 2) ∧ ((𝐵𝐴) / 2) ≤ 2))
8321, 38, 80, 82syl3anbrc 1165 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ∈ (0(,]2))
84 sin02gt0 11470 . . . . . . . 8 (((𝐵𝐴) / 2) ∈ (0(,]2) → 0 < (sin‘((𝐵𝐴) / 2)))
8583, 84syl 14 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (sin‘((𝐵𝐴) / 2)))
8623, 24, 72, 85mulgt0d 7885 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))))
8725lt0neg2d 8278 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (0 < ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) ↔ -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) < 0))
8886, 87mpbid 146 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) < 0)
8926, 30, 25, 88, 86lttrd 7888 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) < ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))))
9026, 25, 29, 89ltadd2dd 8184 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))) < (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
9120, 90eqbrtrrd 3952 . 2 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))) < (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
927, 12npcand 8077 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵 − ((𝐵𝐴) / 2)) + ((𝐵𝐴) / 2)) = 𝐵)
9392fveq2d 5425 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) + ((𝐵𝐴) / 2))) = (cos‘𝐵))
94 cosadd 11444 . . . 4 (((𝐵 − ((𝐵𝐴) / 2)) ∈ ℂ ∧ ((𝐵𝐴) / 2) ∈ ℂ) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) + ((𝐵𝐴) / 2))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
9513, 12, 94syl2anc 408 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) + ((𝐵𝐴) / 2))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
9693, 95eqtr3d 2174 . 2 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
977, 12, 12subsub4d 8104 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2)) = (𝐵 − (((𝐵𝐴) / 2) + ((𝐵𝐴) / 2))))
98112halvesd 8965 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (((𝐵𝐴) / 2) + ((𝐵𝐴) / 2)) = (𝐵𝐴))
9998oveq2d 5790 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − (((𝐵𝐴) / 2) + ((𝐵𝐴) / 2))) = (𝐵 − (𝐵𝐴)))
1009recnd 7794 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
1017, 100nncand 8078 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − (𝐵𝐴)) = 𝐴)
10297, 99, 1013eqtrd 2176 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2)) = 𝐴)
103102fveq2d 5425 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2))) = (cos‘𝐴))
104 cossub 11448 . . . 4 (((𝐵 − ((𝐵𝐴) / 2)) ∈ ℂ ∧ ((𝐵𝐴) / 2) ∈ ℂ) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
10513, 12, 104syl2anc 408 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
106103, 105eqtr3d 2174 . 2 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐴) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
10791, 96, 1063brtr4d 3960 1 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 962   = wceq 1331  wcel 1480  wss 3071   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625  *cxr 7799   < clt 7800  cle 7801  cmin 7933  -cneg 7934   / cdiv 8432  2c2 8771  +crp 9441  (,]cioc 9672  [,]cicc 9674  sincsin 11350  cosccos 11351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-5 8782  df-6 8783  df-7 8784  df-8 8785  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ioc 9676  df-ico 9677  df-icc 9678  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-bc 10494  df-ihash 10522  df-shft 10587  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-ef 11354  df-sin 11356  df-cos 11357
This theorem is referenced by:  cosz12  12861
  Copyright terms: Public domain W3C validator