ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1olemqsum GIF version

Theorem seq3f1olemqsum 10273
Description: Lemma for seq3f1o 10277. 𝑄 gives the same sum as 𝐽. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqf1o.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
iseqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
iseqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1o.6 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1o.7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1olemstep.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemstep.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemstep.const (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
iseqf1olemnk (𝜑𝐾 ≠ (𝐽𝐾))
iseqf1olemqres.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemqsumk.p 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
seq3f1olemqsum (𝜑 → (seq𝑀( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝑄 / 𝑓𝑃)‘𝑁))
Distinct variable groups:   𝑢,𝐽   𝑢,𝐾,𝑥   𝑢,𝑀,𝑥   𝑢,𝑁   𝑥,𝐽   𝑥,𝑄   𝜑,𝑥,𝑦,𝑧   𝜑,𝑢   𝑥, + ,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑓,𝑀,𝑦,𝑧   𝑓,𝑁,𝑥,𝑦,𝑧   𝑦,𝐾,𝑧   𝑓,𝐺,𝑥   𝑓,𝐽,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧   𝑄,𝑓,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝑃(𝑢,𝑓)   + (𝑢,𝑓)   𝑄(𝑢)   𝑆(𝑢,𝑓)   𝐹(𝑥,𝑦,𝑧,𝑢,𝑓)   𝐺(𝑦,𝑧,𝑢)   𝐾(𝑓)

Proof of Theorem seq3f1olemqsum
Dummy variables 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1olemstep.k . . . . . . . 8 (𝜑𝐾 ∈ (𝑀...𝑁))
2 elfzel1 9805 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
31, 2syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
43adantr 274 . . . . . 6 ((𝜑𝑀 < 𝐾) → 𝑀 ∈ ℤ)
5 elfzelz 9806 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
61, 5syl 14 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
76adantr 274 . . . . . . 7 ((𝜑𝑀 < 𝐾) → 𝐾 ∈ ℤ)
8 peano2zm 9092 . . . . . . 7 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
97, 8syl 14 . . . . . 6 ((𝜑𝑀 < 𝐾) → (𝐾 − 1) ∈ ℤ)
10 simpr 109 . . . . . . 7 ((𝜑𝑀 < 𝐾) → 𝑀 < 𝐾)
11 zltlem1 9111 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 < 𝐾𝑀 ≤ (𝐾 − 1)))
124, 7, 11syl2anc 408 . . . . . . 7 ((𝜑𝑀 < 𝐾) → (𝑀 < 𝐾𝑀 ≤ (𝐾 − 1)))
1310, 12mpbid 146 . . . . . 6 ((𝜑𝑀 < 𝐾) → 𝑀 ≤ (𝐾 − 1))
14 eluz2 9332 . . . . . 6 ((𝐾 − 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝐾 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝐾 − 1)))
154, 9, 13, 14syl3anbrc 1165 . . . . 5 ((𝜑𝑀 < 𝐾) → (𝐾 − 1) ∈ (ℤ𝑀))
163ad2antrr 479 . . . . . . . . . 10 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑀 ∈ ℤ)
17 elfzel2 9804 . . . . . . . . . . . 12 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
181, 17syl 14 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
1918ad2antrr 479 . . . . . . . . . 10 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑁 ∈ ℤ)
20 elfzelz 9806 . . . . . . . . . . 11 (𝑏 ∈ (𝑀...(𝐾 − 1)) → 𝑏 ∈ ℤ)
2120adantl 275 . . . . . . . . . 10 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ∈ ℤ)
22 elfzle1 9807 . . . . . . . . . . 11 (𝑏 ∈ (𝑀...(𝐾 − 1)) → 𝑀𝑏)
2322adantl 275 . . . . . . . . . 10 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑀𝑏)
2421zred 9173 . . . . . . . . . . 11 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ∈ ℝ)
256ad2antrr 479 . . . . . . . . . . . 12 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝐾 ∈ ℤ)
2625zred 9173 . . . . . . . . . . 11 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝐾 ∈ ℝ)
2719zred 9173 . . . . . . . . . . 11 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑁 ∈ ℝ)
28 peano2rem 8029 . . . . . . . . . . . . 13 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
2926, 28syl 14 . . . . . . . . . . . 12 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
30 elfzle2 9808 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑀...(𝐾 − 1)) → 𝑏 ≤ (𝐾 − 1))
3130adantl 275 . . . . . . . . . . . 12 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ≤ (𝐾 − 1))
3226lem1d 8691 . . . . . . . . . . . 12 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐾 − 1) ≤ 𝐾)
3324, 29, 26, 31, 32letrd 7886 . . . . . . . . . . 11 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏𝐾)
34 elfzle2 9808 . . . . . . . . . . . . 13 (𝐾 ∈ (𝑀...𝑁) → 𝐾𝑁)
351, 34syl 14 . . . . . . . . . . . 12 (𝜑𝐾𝑁)
3635ad2antrr 479 . . . . . . . . . . 11 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝐾𝑁)
3724, 26, 27, 33, 36letrd 7886 . . . . . . . . . 10 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏𝑁)
38 elfz4 9799 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑀𝑏𝑏𝑁)) → 𝑏 ∈ (𝑀...𝑁))
3916, 19, 21, 23, 37, 38syl32anc 1224 . . . . . . . . 9 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ∈ (𝑀...𝑁))
40 elfzel1 9805 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝐾...(𝐽𝐾)) → 𝐾 ∈ ℤ)
4140zred 9173 . . . . . . . . . . . . 13 (𝑏 ∈ (𝐾...(𝐽𝐾)) → 𝐾 ∈ ℝ)
42 elfzelz 9806 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝐾...(𝐽𝐾)) → 𝑏 ∈ ℤ)
4342zred 9173 . . . . . . . . . . . . 13 (𝑏 ∈ (𝐾...(𝐽𝐾)) → 𝑏 ∈ ℝ)
44 elfzle1 9807 . . . . . . . . . . . . 13 (𝑏 ∈ (𝐾...(𝐽𝐾)) → 𝐾𝑏)
4541, 43, 44lensymd 7884 . . . . . . . . . . . 12 (𝑏 ∈ (𝐾...(𝐽𝐾)) → ¬ 𝑏 < 𝐾)
46 zltlem1 9111 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑏 < 𝐾𝑏 ≤ (𝐾 − 1)))
4721, 25, 46syl2anc 408 . . . . . . . . . . . . 13 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝑏 < 𝐾𝑏 ≤ (𝐾 − 1)))
4831, 47mpbird 166 . . . . . . . . . . . 12 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 < 𝐾)
4945, 48nsyl3 615 . . . . . . . . . . 11 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → ¬ 𝑏 ∈ (𝐾...(𝐽𝐾)))
5049iffalsed 3484 . . . . . . . . . 10 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏 ∈ (𝐾...(𝐽𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽𝑏)) = (𝐽𝑏))
51 iseqf1olemstep.j . . . . . . . . . . . . 13 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
52 f1of 5367 . . . . . . . . . . . . 13 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
5351, 52syl 14 . . . . . . . . . . . 12 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
5453ad2antrr 479 . . . . . . . . . . 11 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
5554, 39ffvelrnd 5556 . . . . . . . . . 10 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐽𝑏) ∈ (𝑀...𝑁))
5650, 55eqeltrd 2216 . . . . . . . . 9 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏 ∈ (𝐾...(𝐽𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽𝑏)) ∈ (𝑀...𝑁))
57 eleq1w 2200 . . . . . . . . . . 11 (𝑢 = 𝑏 → (𝑢 ∈ (𝐾...(𝐽𝐾)) ↔ 𝑏 ∈ (𝐾...(𝐽𝐾))))
58 eqeq1 2146 . . . . . . . . . . . 12 (𝑢 = 𝑏 → (𝑢 = 𝐾𝑏 = 𝐾))
59 fvoveq1 5797 . . . . . . . . . . . 12 (𝑢 = 𝑏 → (𝐽‘(𝑢 − 1)) = (𝐽‘(𝑏 − 1)))
6058, 59ifbieq2d 3496 . . . . . . . . . . 11 (𝑢 = 𝑏 → if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))) = if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))))
61 fveq2 5421 . . . . . . . . . . 11 (𝑢 = 𝑏 → (𝐽𝑢) = (𝐽𝑏))
6257, 60, 61ifbieq12d 3498 . . . . . . . . . 10 (𝑢 = 𝑏 → if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)) = if(𝑏 ∈ (𝐾...(𝐽𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽𝑏)))
63 iseqf1olemqres.q . . . . . . . . . 10 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
6462, 63fvmptg 5497 . . . . . . . . 9 ((𝑏 ∈ (𝑀...𝑁) ∧ if(𝑏 ∈ (𝐾...(𝐽𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽𝑏)) ∈ (𝑀...𝑁)) → (𝑄𝑏) = if(𝑏 ∈ (𝐾...(𝐽𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽𝑏)))
6539, 56, 64syl2anc 408 . . . . . . . 8 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝑄𝑏) = if(𝑏 ∈ (𝐾...(𝐽𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽𝑏)))
6665, 50eqtrd 2172 . . . . . . 7 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝑄𝑏) = (𝐽𝑏))
6766fveq2d 5425 . . . . . 6 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐺‘(𝑄𝑏)) = (𝐺‘(𝐽𝑏)))
68 iseqf1olemqsumk.p . . . . . . . . . . 11 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
6968csbeq2i 3029 . . . . . . . . . 10 𝑄 / 𝑓𝑃 = 𝑄 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
703, 18fzfigd 10204 . . . . . . . . . . . . 13 (𝜑 → (𝑀...𝑁) ∈ Fin)
71 mptexg 5645 . . . . . . . . . . . . 13 ((𝑀...𝑁) ∈ Fin → (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢))) ∈ V)
7270, 71syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢))) ∈ V)
7363, 72eqeltrid 2226 . . . . . . . . . . 11 (𝜑𝑄 ∈ V)
74 nfcvd 2282 . . . . . . . . . . . 12 (𝑄 ∈ V → 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
75 fveq1 5420 . . . . . . . . . . . . . . 15 (𝑓 = 𝑄 → (𝑓𝑥) = (𝑄𝑥))
7675fveq2d 5425 . . . . . . . . . . . . . 14 (𝑓 = 𝑄 → (𝐺‘(𝑓𝑥)) = (𝐺‘(𝑄𝑥)))
7776ifeq1d 3489 . . . . . . . . . . . . 13 (𝑓 = 𝑄 → if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) = if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀)))
7877mpteq2dv 4019 . . . . . . . . . . . 12 (𝑓 = 𝑄 → (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
7974, 78csbiegf 3043 . . . . . . . . . . 11 (𝑄 ∈ V → 𝑄 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
8073, 79syl 14 . . . . . . . . . 10 (𝜑𝑄 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
8169, 80syl5eq 2184 . . . . . . . . 9 (𝜑𝑄 / 𝑓𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
8281ad2antrr 479 . . . . . . . 8 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑄 / 𝑓𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
83 breq1 3932 . . . . . . . . . 10 (𝑥 = 𝑏 → (𝑥𝑁𝑏𝑁))
84 2fveq3 5426 . . . . . . . . . 10 (𝑥 = 𝑏 → (𝐺‘(𝑄𝑥)) = (𝐺‘(𝑄𝑏)))
8583, 84ifbieq1d 3494 . . . . . . . . 9 (𝑥 = 𝑏 → if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀)) = if(𝑏𝑁, (𝐺‘(𝑄𝑏)), (𝐺𝑀)))
8685adantl 275 . . . . . . . 8 ((((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) ∧ 𝑥 = 𝑏) → if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀)) = if(𝑏𝑁, (𝐺‘(𝑄𝑏)), (𝐺𝑀)))
87 elfzuz 9802 . . . . . . . . 9 (𝑏 ∈ (𝑀...(𝐾 − 1)) → 𝑏 ∈ (ℤ𝑀))
8887adantl 275 . . . . . . . 8 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ∈ (ℤ𝑀))
8937iftrued 3481 . . . . . . . . 9 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏𝑁, (𝐺‘(𝑄𝑏)), (𝐺𝑀)) = (𝐺‘(𝑄𝑏)))
90 fveq2 5421 . . . . . . . . . . 11 (𝑎 = (𝑄𝑏) → (𝐺𝑎) = (𝐺‘(𝑄𝑏)))
9190eleq1d 2208 . . . . . . . . . 10 (𝑎 = (𝑄𝑏) → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺‘(𝑄𝑏)) ∈ 𝑆))
92 iseqf1o.7 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
9392ralrimiva 2505 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
94 fveq2 5421 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝐺𝑥) = (𝐺𝑎))
9594eleq1d 2208 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺𝑎) ∈ 𝑆))
9695cbvralv 2654 . . . . . . . . . . . 12 (∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
9793, 96sylib 121 . . . . . . . . . . 11 (𝜑 → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
9897ad2antrr 479 . . . . . . . . . 10 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
991, 51, 63iseqf1olemqf 10264 . . . . . . . . . . . . 13 (𝜑𝑄:(𝑀...𝑁)⟶(𝑀...𝑁))
10099ad2antrr 479 . . . . . . . . . . . 12 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑄:(𝑀...𝑁)⟶(𝑀...𝑁))
101100, 39ffvelrnd 5556 . . . . . . . . . . 11 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝑄𝑏) ∈ (𝑀...𝑁))
102 elfzuz 9802 . . . . . . . . . . 11 ((𝑄𝑏) ∈ (𝑀...𝑁) → (𝑄𝑏) ∈ (ℤ𝑀))
103101, 102syl 14 . . . . . . . . . 10 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝑄𝑏) ∈ (ℤ𝑀))
10491, 98, 103rspcdva 2794 . . . . . . . . 9 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐺‘(𝑄𝑏)) ∈ 𝑆)
10589, 104eqeltrd 2216 . . . . . . . 8 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏𝑁, (𝐺‘(𝑄𝑏)), (𝐺𝑀)) ∈ 𝑆)
10682, 86, 88, 105fvmptd 5502 . . . . . . 7 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝑄 / 𝑓𝑃𝑏) = if(𝑏𝑁, (𝐺‘(𝑄𝑏)), (𝐺𝑀)))
107106, 89eqtrd 2172 . . . . . 6 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝑄 / 𝑓𝑃𝑏) = (𝐺‘(𝑄𝑏)))
10868csbeq2i 3029 . . . . . . . . . 10 𝐽 / 𝑓𝑃 = 𝐽 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
109 fex 5647 . . . . . . . . . . . 12 ((𝐽:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → 𝐽 ∈ V)
11053, 70, 109syl2anc 408 . . . . . . . . . . 11 (𝜑𝐽 ∈ V)
111 nfcvd 2282 . . . . . . . . . . . 12 (𝐽 ∈ V → 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀))))
112 fveq1 5420 . . . . . . . . . . . . . . 15 (𝑓 = 𝐽 → (𝑓𝑥) = (𝐽𝑥))
113112fveq2d 5425 . . . . . . . . . . . . . 14 (𝑓 = 𝐽 → (𝐺‘(𝑓𝑥)) = (𝐺‘(𝐽𝑥)))
114113ifeq1d 3489 . . . . . . . . . . . . 13 (𝑓 = 𝐽 → if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) = if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀)))
115114mpteq2dv 4019 . . . . . . . . . . . 12 (𝑓 = 𝐽 → (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀))))
116111, 115csbiegf 3043 . . . . . . . . . . 11 (𝐽 ∈ V → 𝐽 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀))))
117110, 116syl 14 . . . . . . . . . 10 (𝜑𝐽 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀))))
118108, 117syl5eq 2184 . . . . . . . . 9 (𝜑𝐽 / 𝑓𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀))))
119118ad2antrr 479 . . . . . . . 8 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝐽 / 𝑓𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀))))
120 2fveq3 5426 . . . . . . . . . 10 (𝑥 = 𝑏 → (𝐺‘(𝐽𝑥)) = (𝐺‘(𝐽𝑏)))
12183, 120ifbieq1d 3494 . . . . . . . . 9 (𝑥 = 𝑏 → if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀)) = if(𝑏𝑁, (𝐺‘(𝐽𝑏)), (𝐺𝑀)))
122121adantl 275 . . . . . . . 8 ((((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) ∧ 𝑥 = 𝑏) → if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀)) = if(𝑏𝑁, (𝐺‘(𝐽𝑏)), (𝐺𝑀)))
12337iftrued 3481 . . . . . . . . 9 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏𝑁, (𝐺‘(𝐽𝑏)), (𝐺𝑀)) = (𝐺‘(𝐽𝑏)))
124 fveq2 5421 . . . . . . . . . . 11 (𝑎 = (𝐽𝑏) → (𝐺𝑎) = (𝐺‘(𝐽𝑏)))
125124eleq1d 2208 . . . . . . . . . 10 (𝑎 = (𝐽𝑏) → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺‘(𝐽𝑏)) ∈ 𝑆))
126 elfzuz 9802 . . . . . . . . . . 11 ((𝐽𝑏) ∈ (𝑀...𝑁) → (𝐽𝑏) ∈ (ℤ𝑀))
12755, 126syl 14 . . . . . . . . . 10 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐽𝑏) ∈ (ℤ𝑀))
128125, 98, 127rspcdva 2794 . . . . . . . . 9 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐺‘(𝐽𝑏)) ∈ 𝑆)
129123, 128eqeltrd 2216 . . . . . . . 8 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏𝑁, (𝐺‘(𝐽𝑏)), (𝐺𝑀)) ∈ 𝑆)
130119, 122, 88, 129fvmptd 5502 . . . . . . 7 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐽 / 𝑓𝑃𝑏) = if(𝑏𝑁, (𝐺‘(𝐽𝑏)), (𝐺𝑀)))
131130, 123eqtrd 2172 . . . . . 6 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐽 / 𝑓𝑃𝑏) = (𝐺‘(𝐽𝑏)))
13267, 107, 1313eqtr4rd 2183 . . . . 5 (((𝜑𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐽 / 𝑓𝑃𝑏) = (𝑄 / 𝑓𝑃𝑏))
1331adantr 274 . . . . . 6 ((𝜑𝑀 < 𝐾) → 𝐾 ∈ (𝑀...𝑁))
13451adantr 274 . . . . . 6 ((𝜑𝑀 < 𝐾) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
13592adantlr 468 . . . . . 6 (((𝜑𝑀 < 𝐾) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
136133, 134, 63, 135, 68iseqf1olemjpcl 10268 . . . . 5 (((𝜑𝑀 < 𝐾) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
137133, 134, 63, 135, 68iseqf1olemqpcl 10269 . . . . 5 (((𝜑𝑀 < 𝐾) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
138 iseqf1o.1 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
139138adantlr 468 . . . . 5 (((𝜑𝑀 < 𝐾) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
14015, 132, 136, 137, 139seq3fveq 10244 . . . 4 ((𝜑𝑀 < 𝐾) → (seq𝑀( + , 𝐽 / 𝑓𝑃)‘(𝐾 − 1)) = (seq𝑀( + , 𝑄 / 𝑓𝑃)‘(𝐾 − 1)))
141 iseqf1o.2 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
142 iseqf1o.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
143 iseqf1o.4 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
144 iseqf1o.6 . . . . . . 7 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
145 iseqf1olemstep.const . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
146 iseqf1olemnk . . . . . . 7 (𝜑𝐾 ≠ (𝐽𝐾))
147138, 141, 142, 143, 144, 92, 1, 51, 145, 146, 63, 68seq3f1olemqsumk 10272 . . . . . 6 (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘𝑁))
148147adantr 274 . . . . 5 ((𝜑𝑀 < 𝐾) → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘𝑁))
1497zcnd 9174 . . . . . . . 8 ((𝜑𝑀 < 𝐾) → 𝐾 ∈ ℂ)
150 npcan1 8140 . . . . . . . 8 (𝐾 ∈ ℂ → ((𝐾 − 1) + 1) = 𝐾)
151149, 150syl 14 . . . . . . 7 ((𝜑𝑀 < 𝐾) → ((𝐾 − 1) + 1) = 𝐾)
152151seqeq1d 10224 . . . . . 6 ((𝜑𝑀 < 𝐾) → seq((𝐾 − 1) + 1)( + , 𝐽 / 𝑓𝑃) = seq𝐾( + , 𝐽 / 𝑓𝑃))
153152fveq1d 5423 . . . . 5 ((𝜑𝑀 < 𝐾) → (seq((𝐾 − 1) + 1)( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝐾( + , 𝐽 / 𝑓𝑃)‘𝑁))
154151seqeq1d 10224 . . . . . 6 ((𝜑𝑀 < 𝐾) → seq((𝐾 − 1) + 1)( + , 𝑄 / 𝑓𝑃) = seq𝐾( + , 𝑄 / 𝑓𝑃))
155154fveq1d 5423 . . . . 5 ((𝜑𝑀 < 𝐾) → (seq((𝐾 − 1) + 1)( + , 𝑄 / 𝑓𝑃)‘𝑁) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘𝑁))
156148, 153, 1553eqtr4d 2182 . . . 4 ((𝜑𝑀 < 𝐾) → (seq((𝐾 − 1) + 1)( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq((𝐾 − 1) + 1)( + , 𝑄 / 𝑓𝑃)‘𝑁))
157140, 156oveq12d 5792 . . 3 ((𝜑𝑀 < 𝐾) → ((seq𝑀( + , 𝐽 / 𝑓𝑃)‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , 𝐽 / 𝑓𝑃)‘𝑁)) = ((seq𝑀( + , 𝑄 / 𝑓𝑃)‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , 𝑄 / 𝑓𝑃)‘𝑁)))
158142adantlr 468 . . . 4 (((𝜑𝑀 < 𝐾) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
159 elfzuz3 9803 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
1601, 159syl 14 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝐾))
161160adantr 274 . . . . 5 ((𝜑𝑀 < 𝐾) → 𝑁 ∈ (ℤ𝐾))
162151fveq2d 5425 . . . . 5 ((𝜑𝑀 < 𝐾) → (ℤ‘((𝐾 − 1) + 1)) = (ℤ𝐾))
163161, 162eleqtrrd 2219 . . . 4 ((𝜑𝑀 < 𝐾) → 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)))
164139, 158, 163, 15, 136seq3split 10252 . . 3 ((𝜑𝑀 < 𝐾) → (seq𝑀( + , 𝐽 / 𝑓𝑃)‘𝑁) = ((seq𝑀( + , 𝐽 / 𝑓𝑃)‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , 𝐽 / 𝑓𝑃)‘𝑁)))
165139, 158, 163, 15, 137seq3split 10252 . . 3 ((𝜑𝑀 < 𝐾) → (seq𝑀( + , 𝑄 / 𝑓𝑃)‘𝑁) = ((seq𝑀( + , 𝑄 / 𝑓𝑃)‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , 𝑄 / 𝑓𝑃)‘𝑁)))
166157, 164, 1653eqtr4d 2182 . 2 ((𝜑𝑀 < 𝐾) → (seq𝑀( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝑄 / 𝑓𝑃)‘𝑁))
167147adantr 274 . . 3 ((𝜑𝑀 = 𝐾) → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘𝑁))
168 seqeq1 10221 . . . . . 6 (𝑀 = 𝐾 → seq𝑀( + , 𝐽 / 𝑓𝑃) = seq𝐾( + , 𝐽 / 𝑓𝑃))
169168fveq1d 5423 . . . . 5 (𝑀 = 𝐾 → (seq𝑀( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝐾( + , 𝐽 / 𝑓𝑃)‘𝑁))
170 seqeq1 10221 . . . . . 6 (𝑀 = 𝐾 → seq𝑀( + , 𝑄 / 𝑓𝑃) = seq𝐾( + , 𝑄 / 𝑓𝑃))
171170fveq1d 5423 . . . . 5 (𝑀 = 𝐾 → (seq𝑀( + , 𝑄 / 𝑓𝑃)‘𝑁) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘𝑁))
172169, 171eqeq12d 2154 . . . 4 (𝑀 = 𝐾 → ((seq𝑀( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝑄 / 𝑓𝑃)‘𝑁) ↔ (seq𝐾( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘𝑁)))
173172adantl 275 . . 3 ((𝜑𝑀 = 𝐾) → ((seq𝑀( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝑄 / 𝑓𝑃)‘𝑁) ↔ (seq𝐾( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘𝑁)))
174167, 173mpbird 166 . 2 ((𝜑𝑀 = 𝐾) → (seq𝑀( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝑄 / 𝑓𝑃)‘𝑁))
175 elfzle1 9807 . . . 4 (𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)
1761, 175syl 14 . . 3 (𝜑𝑀𝐾)
177 zleloe 9101 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (𝑀 < 𝐾𝑀 = 𝐾)))
1783, 6, 177syl2anc 408 . . 3 (𝜑 → (𝑀𝐾 ↔ (𝑀 < 𝐾𝑀 = 𝐾)))
179176, 178mpbid 146 . 2 (𝜑 → (𝑀 < 𝐾𝑀 = 𝐾))
180166, 174, 179mpjaodan 787 1 (𝜑 → (seq𝑀( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝑄 / 𝑓𝑃)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480  wne 2308  wral 2416  Vcvv 2686  csb 3003  ifcif 3474   class class class wbr 3929  cmpt 3989  ccnv 4538  wf 5119  1-1-ontowf1o 5122  cfv 5123  (class class class)co 5774  Fincfn 6634  cc 7618  cr 7619  1c1 7621   + caddc 7623   < clt 7800  cle 7801  cmin 7933  cz 9054  cuz 9326  ...cfz 9790  ..^cfzo 9919  seqcseq 10218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-1o 6313  df-er 6429  df-en 6635  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-fzo 9920  df-seqfrec 10219
This theorem is referenced by:  seq3f1olemstep  10274
  Copyright terms: Public domain W3C validator