MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abv0 Structured version   Visualization version   GIF version

Theorem abv0 18595
Description: The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abv0.z 0 = (0g𝑅)
Assertion
Ref Expression
abv0 (𝐹𝐴 → (𝐹0 ) = 0)

Proof of Theorem abv0
StepHypRef Expression
1 abv0.a . . . 4 𝐴 = (AbsVal‘𝑅)
21abvrcl 18585 . . 3 (𝐹𝐴𝑅 ∈ Ring)
3 eqid 2604 . . . 4 (Base‘𝑅) = (Base‘𝑅)
4 abv0.z . . . 4 0 = (0g𝑅)
53, 4ring0cl 18333 . . 3 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
62, 5syl 17 . 2 (𝐹𝐴0 ∈ (Base‘𝑅))
7 eqid 2604 . . 3 0 = 0
81, 3, 4abveq0 18590 . . 3 ((𝐹𝐴0 ∈ (Base‘𝑅)) → ((𝐹0 ) = 0 ↔ 0 = 0 ))
97, 8mpbiri 246 . 2 ((𝐹𝐴0 ∈ (Base‘𝑅)) → (𝐹0 ) = 0)
106, 9mpdan 698 1 (𝐹𝐴 → (𝐹0 ) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1975  cfv 5785  0cc0 9787  Basecbs 15636  0gc0g 15864  Ringcrg 18311  AbsValcabv 18580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-op 4126  df-uni 4362  df-br 4573  df-opab 4633  df-mpt 4634  df-id 4938  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-map 7718  df-0g 15866  df-mgm 17006  df-sgrp 17048  df-mnd 17059  df-grp 17189  df-ring 18313  df-abv 18581
This theorem is referenced by:  abvdom  18602  abvres  18603  abvcxp  25016  qabvle  25026  ostthlem1  25028  ostth2lem2  25035  ostth3  25039
  Copyright terms: Public domain W3C validator