MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addex Structured version   Visualization version   GIF version

Theorem addex 11665
Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
addex + ∈ V

Proof of Theorem addex
StepHypRef Expression
1 ax-addf 9872 . 2 + :(ℂ × ℂ)⟶ℂ
2 cnex 9874 . . 3 ℂ ∈ V
32, 2xpex 6838 . 2 (ℂ × ℂ) ∈ V
4 fex2 6992 . 2 (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V)
51, 3, 2, 4mp3an 1415 1 + ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 1976  Vcvv 3172   × cxp 5026  wf 5786  cc 9791   + caddc 9796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-addf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-xp 5034  df-rel 5035  df-cnv 5036  df-dm 5038  df-rn 5039  df-fun 5792  df-fn 5793  df-f 5794
This theorem is referenced by:  cnaddablx  18043  cnaddabl  18044  cnaddid  18045  cnaddinv  18046  zaddablx  18047  cnfldadd  19521  cnlmodlem2  22693  cnnvg  26741  cnnvs  26744  cncph  26892  cnaddcom  33101
  Copyright terms: Public domain W3C validator