MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncph Structured version   Visualization version   GIF version

Theorem cncph 28596
Description: The set of complex numbers is an inner product (pre-Hilbert) space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
cncph.6 𝑈 = ⟨⟨ + , · ⟩, abs⟩
Assertion
Ref Expression
cncph 𝑈 ∈ CPreHilOLD

Proof of Theorem cncph
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncph.6 . 2 𝑈 = ⟨⟨ + , · ⟩, abs⟩
2 eqid 2821 . . . 4 ⟨⟨ + , · ⟩, abs⟩ = ⟨⟨ + , · ⟩, abs⟩
32cnnv 28454 . . 3 ⟨⟨ + , · ⟩, abs⟩ ∈ NrmCVec
4 mulm1 11081 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (-1 · 𝑦) = -𝑦)
54adantl 484 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-1 · 𝑦) = -𝑦)
65oveq2d 7172 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + (-1 · 𝑦)) = (𝑥 + -𝑦))
7 negsub 10934 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + -𝑦) = (𝑥𝑦))
86, 7eqtrd 2856 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + (-1 · 𝑦)) = (𝑥𝑦))
98fveq2d 6674 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + (-1 · 𝑦))) = (abs‘(𝑥𝑦)))
109oveq1d 7171 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 + (-1 · 𝑦)))↑2) = ((abs‘(𝑥𝑦))↑2))
1110oveq2d 7172 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)))
12 sqabsadd 14642 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 + 𝑦))↑2) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (2 · (ℜ‘(𝑥 · (∗‘𝑦))))))
13 sqabssub 14643 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥𝑦))↑2) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) − (2 · (ℜ‘(𝑥 · (∗‘𝑦))))))
1412, 13oveq12d 7174 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)) = (((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (2 · (ℜ‘(𝑥 · (∗‘𝑦))))) + ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) − (2 · (ℜ‘(𝑥 · (∗‘𝑦)))))))
15 abscl 14638 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
1615recnd 10669 . . . . . . . . . 10 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℂ)
1716sqcld 13509 . . . . . . . . 9 (𝑥 ∈ ℂ → ((abs‘𝑥)↑2) ∈ ℂ)
18 abscl 14638 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (abs‘𝑦) ∈ ℝ)
1918recnd 10669 . . . . . . . . . 10 (𝑦 ∈ ℂ → (abs‘𝑦) ∈ ℂ)
2019sqcld 13509 . . . . . . . . 9 (𝑦 ∈ ℂ → ((abs‘𝑦)↑2) ∈ ℂ)
21 addcl 10619 . . . . . . . . 9 ((((abs‘𝑥)↑2) ∈ ℂ ∧ ((abs‘𝑦)↑2) ∈ ℂ) → (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ)
2217, 20, 21syl2an 597 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ)
23 2cn 11713 . . . . . . . . 9 2 ∈ ℂ
24 cjcl 14464 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (∗‘𝑦) ∈ ℂ)
25 mulcl 10621 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (∗‘𝑦) ∈ ℂ) → (𝑥 · (∗‘𝑦)) ∈ ℂ)
2624, 25sylan2 594 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · (∗‘𝑦)) ∈ ℂ)
27 recl 14469 . . . . . . . . . . 11 ((𝑥 · (∗‘𝑦)) ∈ ℂ → (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℝ)
2827recnd 10669 . . . . . . . . . 10 ((𝑥 · (∗‘𝑦)) ∈ ℂ → (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℂ)
2926, 28syl 17 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℂ)
30 mulcl 10621 . . . . . . . . 9 ((2 ∈ ℂ ∧ (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℂ) → (2 · (ℜ‘(𝑥 · (∗‘𝑦)))) ∈ ℂ)
3123, 29, 30sylancr 589 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (2 · (ℜ‘(𝑥 · (∗‘𝑦)))) ∈ ℂ)
3222, 31, 22ppncand 11037 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (2 · (ℜ‘(𝑥 · (∗‘𝑦))))) + ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) − (2 · (ℜ‘(𝑥 · (∗‘𝑦)))))) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3314, 32eqtrd 2856 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
34 2times 11774 . . . . . . . 8 ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ → (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3534eqcomd 2827 . . . . . . 7 ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ → ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3622, 35syl 17 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3733, 36eqtrd 2856 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3811, 37eqtrd 2856 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3938rgen2 3203 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)))
40 addex 12388 . . . 4 + ∈ V
41 mulex 12389 . . . 4 · ∈ V
42 absf 14697 . . . . 5 abs:ℂ⟶ℝ
43 cnex 10618 . . . . 5 ℂ ∈ V
44 fex 6989 . . . . 5 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
4542, 43, 44mp2an 690 . . . 4 abs ∈ V
46 cnaddabloOLD 28358 . . . . . . 7 + ∈ AbelOp
47 ablogrpo 28324 . . . . . . 7 ( + ∈ AbelOp → + ∈ GrpOp)
4846, 47ax-mp 5 . . . . . 6 + ∈ GrpOp
49 ax-addf 10616 . . . . . . 7 + :(ℂ × ℂ)⟶ℂ
5049fdmi 6524 . . . . . 6 dom + = (ℂ × ℂ)
5148, 50grporn 28298 . . . . 5 ℂ = ran +
5251isphg 28594 . . . 4 (( + ∈ V ∧ · ∈ V ∧ abs ∈ V) → (⟨⟨ + , · ⟩, abs⟩ ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, abs⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))))
5340, 41, 45, 52mp3an 1457 . . 3 (⟨⟨ + , · ⟩, abs⟩ ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, abs⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)))))
543, 39, 53mpbir2an 709 . 2 ⟨⟨ + , · ⟩, abs⟩ ∈ CPreHilOLD
551, 54eqeltri 2909 1 𝑈 ∈ CPreHilOLD
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  cop 4573   × cxp 5553  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870  -cneg 10871  2c2 11693  cexp 13430  ccj 14455  cre 14456  abscabs 14593  GrpOpcgr 28266  AbelOpcablo 28321  NrmCVeccnv 28361  CPreHilOLDccphlo 28589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-grpo 28270  df-gid 28271  df-ablo 28322  df-vc 28336  df-nv 28369  df-ph 28590
This theorem is referenced by:  elimphu  28598  cnchl  28693
  Copyright terms: Public domain W3C validator