Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0mnd Structured version   Visualization version   GIF version

Theorem nn0mnd 44135
Description: The set of nonnegative integers under (complex) addition is a monoid. Example in [Lang] p. 6. Remark: 𝑀 could have also been written as (ℂflds0). (Contributed by AV, 27-Dec-2023.)
Hypothesis
Ref Expression
nn0mnd.g 𝑀 = {⟨(Base‘ndx), ℕ0⟩, ⟨(+g‘ndx), + ⟩}
Assertion
Ref Expression
nn0mnd 𝑀 ∈ Mnd

Proof of Theorem nn0mnd
Dummy variables 𝑥 𝑦 𝑧 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0addcl 11933 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 + 𝑦) ∈ ℕ0)
2 nn0cn 11908 . . . . . . . . 9 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
3 nn0cn 11908 . . . . . . . . 9 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
4 nn0cn 11908 . . . . . . . . 9 (𝑧 ∈ ℕ0𝑧 ∈ ℂ)
52, 3, 43anim123i 1147 . . . . . . . 8 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ))
653expa 1114 . . . . . . 7 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ))
7 addass 10624 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
86, 7syl 17 . . . . . 6 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
98ralrimiva 3182 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
101, 9jca 514 . . . 4 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
1110rgen2 3203 . . 3 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
12 c0ex 10635 . . . . 5 0 ∈ V
13 eleq1 2900 . . . . . 6 (𝑒 = 0 → (𝑒 ∈ ℕ0 ↔ 0 ∈ ℕ0))
14 oveq1 7163 . . . . . . . . 9 (𝑒 = 0 → (𝑒 + 𝑥) = (0 + 𝑥))
1514eqeq1d 2823 . . . . . . . 8 (𝑒 = 0 → ((𝑒 + 𝑥) = 𝑥 ↔ (0 + 𝑥) = 𝑥))
16 oveq2 7164 . . . . . . . . 9 (𝑒 = 0 → (𝑥 + 𝑒) = (𝑥 + 0))
1716eqeq1d 2823 . . . . . . . 8 (𝑒 = 0 → ((𝑥 + 𝑒) = 𝑥 ↔ (𝑥 + 0) = 𝑥))
1815, 17anbi12d 632 . . . . . . 7 (𝑒 = 0 → (((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)))
1918ralbidv 3197 . . . . . 6 (𝑒 = 0 → (∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)))
2013, 19anbi12d 632 . . . . 5 (𝑒 = 0 → ((𝑒 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ↔ (0 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))))
21 0nn0 11913 . . . . . 6 0 ∈ ℕ0
222addid2d 10841 . . . . . . . 8 (𝑥 ∈ ℕ0 → (0 + 𝑥) = 𝑥)
232addid1d 10840 . . . . . . . 8 (𝑥 ∈ ℕ0 → (𝑥 + 0) = 𝑥)
2422, 23jca 514 . . . . . . 7 (𝑥 ∈ ℕ0 → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
2524rgen 3148 . . . . . 6 𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)
2621, 25pm3.2i 473 . . . . 5 (0 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
2712, 20, 26ceqsexv2d 3542 . . . 4 𝑒(𝑒 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
28 df-rex 3144 . . . 4 (∃𝑒 ∈ ℕ0𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∃𝑒(𝑒 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
2927, 28mpbir 233 . . 3 𝑒 ∈ ℕ0𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)
3011, 29pm3.2i 473 . 2 (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑒 ∈ ℕ0𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
31 nn0ex 11904 . . . 4 0 ∈ V
32 nn0mnd.g . . . . 5 𝑀 = {⟨(Base‘ndx), ℕ0⟩, ⟨(+g‘ndx), + ⟩}
3332grpbase 16610 . . . 4 (ℕ0 ∈ V → ℕ0 = (Base‘𝑀))
3431, 33ax-mp 5 . . 3 0 = (Base‘𝑀)
35 addex 12388 . . . 4 + ∈ V
3632grpplusg 16611 . . . 4 ( + ∈ V → + = (+g𝑀))
3735, 36ax-mp 5 . . 3 + = (+g𝑀)
3834, 37ismnd 17914 . 2 (𝑀 ∈ Mnd ↔ (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑒 ∈ ℕ0𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
3930, 38mpbir 233 1 𝑀 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  {cpr 4569  cop 4573  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537   + caddc 10540  0cn0 11898  ndxcnx 16480  Basecbs 16483  +gcplusg 16565  Mndcmnd 17911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-addf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mgm 17852  df-sgrp 17901  df-mnd 17912
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator