HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjeu Structured version   Visualization version   GIF version

Theorem adjeu 29666
Description: Elementhood in the domain of the adjoint function. (Contributed by Mario Carneiro, 11-Sep-2015.) (Revised by Mario Carneiro, 24-Dec-2016.) (New usage is discouraged.)
Assertion
Ref Expression
adjeu (𝑇: ℋ⟶ ℋ → (𝑇 ∈ dom adj ↔ ∃!𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
Distinct variable group:   𝑥,𝑢,𝑦,𝑇

Proof of Theorem adjeu
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 28776 . . . 4 ℋ ∈ V
2 fex2 7638 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ ℋ ∈ V ∧ ℋ ∈ V) → 𝑇 ∈ V)
31, 1, 2mp3an23 1449 . . 3 (𝑇: ℋ⟶ ℋ → 𝑇 ∈ V)
4 feq1 6495 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡: ℋ⟶ ℋ ↔ 𝑇: ℋ⟶ ℋ))
5 fveq1 6669 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (𝑡𝑦) = (𝑇𝑦))
65oveq2d 7172 . . . . . . . . . . 11 (𝑡 = 𝑇 → (𝑥 ·ih (𝑡𝑦)) = (𝑥 ·ih (𝑇𝑦)))
76eqeq1d 2823 . . . . . . . . . 10 (𝑡 = 𝑇 → ((𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
872ralbidv 3199 . . . . . . . . 9 (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
94, 83anbi13d 1434 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
10 3anass 1091 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
119, 10syl6bb 289 . . . . . . 7 (𝑡 = 𝑇 → ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))))
1211exbidv 1922 . . . . . 6 (𝑡 = 𝑇 → (∃𝑢(𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ ∃𝑢(𝑇: ℋ⟶ ℋ ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))))
13 19.42v 1954 . . . . . 6 (∃𝑢(𝑇: ℋ⟶ ℋ ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))) ↔ (𝑇: ℋ⟶ ℋ ∧ ∃𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
1412, 13syl6bb 289 . . . . 5 (𝑡 = 𝑇 → (∃𝑢(𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ ∃𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))))
15 dfadj2 29662 . . . . . . 7 adj = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))}
1615dmeqi 5773 . . . . . 6 dom adj = dom {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))}
17 dmopab 5784 . . . . . 6 dom {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))} = {𝑡 ∣ ∃𝑢(𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))}
1816, 17eqtri 2844 . . . . 5 dom adj = {𝑡 ∣ ∃𝑢(𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))}
1914, 18elab2g 3668 . . . 4 (𝑇 ∈ V → (𝑇 ∈ dom adj ↔ (𝑇: ℋ⟶ ℋ ∧ ∃𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))))
2019baibd 542 . . 3 ((𝑇 ∈ V ∧ 𝑇: ℋ⟶ ℋ) → (𝑇 ∈ dom adj ↔ ∃𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
213, 20mpancom 686 . 2 (𝑇: ℋ⟶ ℋ → (𝑇 ∈ dom adj ↔ ∃𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
22 df-reu 3145 . . 3 (∃!𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ↔ ∃!𝑢(𝑢 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
231, 1elmap 8435 . . . . 5 (𝑢 ∈ ( ℋ ↑m ℋ) ↔ 𝑢: ℋ⟶ ℋ)
2423anbi1i 625 . . . 4 ((𝑢 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
2524eubii 2670 . . 3 (∃!𝑢(𝑢 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ ∃!𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
26 adjmo 29609 . . . 4 ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))
27 df-eu 2654 . . . 4 (∃!𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (∃𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ∧ ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
2826, 27mpbiran2 708 . . 3 (∃!𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ ∃𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
2922, 25, 283bitri 299 . 2 (∃!𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ↔ ∃𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
3021, 29syl6bbr 291 1 (𝑇: ℋ⟶ ℋ → (𝑇 ∈ dom adj ↔ ∃!𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  ∃*wmo 2620  ∃!weu 2653  {cab 2799  wral 3138  ∃!wreu 3140  Vcvv 3494  {copab 5128  dom cdm 5555  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  chba 28696   ·ih csp 28699  adjcado 28732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-hilex 28776  ax-hfvadd 28777  ax-hvcom 28778  ax-hvass 28779  ax-hv0cl 28780  ax-hvaddid 28781  ax-hfvmul 28782  ax-hvmulid 28783  ax-hvdistr2 28786  ax-hvmul0 28787  ax-hfi 28856  ax-his1 28859  ax-his2 28860  ax-his3 28861  ax-his4 28862
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-2 11701  df-cj 14458  df-re 14459  df-im 14460  df-hvsub 28748  df-adjh 29626
This theorem is referenced by:  adjbdln  29860
  Copyright terms: Public domain W3C validator