| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aleph0 | Structured version Visualization version GIF version | ||
| Description: The first infinite cardinal number, discovered by Georg Cantor in 1873, has the same size as the set of natural numbers ω (and under our particular definition is also equal to it). In the literature, the argument of the aleph function is often written as a subscript, and the first aleph is written ℵ0. Exercise 3 of [TakeutiZaring] p. 91. Also Definition 12(i) of [Suppes] p. 228. From Moshé Machover, Set Theory, Logic, and Their Limitations, p. 95: "Aleph ... the first letter in the Hebrew alphabet ... is also the first letter of the Hebrew word ... (einsoph, meaning infinity), which is a cabbalistic appellation of the deity. The notation is due to Cantor, who was deeply interested in mysticism." (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| aleph0 | ⊢ (ℵ‘∅) = ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-aleph 9899 | . . 3 ⊢ ℵ = rec(har, ω) | |
| 2 | 1 | fveq1i 6861 | . 2 ⊢ (ℵ‘∅) = (rec(har, ω)‘∅) |
| 3 | omex 9602 | . . 3 ⊢ ω ∈ V | |
| 4 | 3 | rdg0 8391 | . 2 ⊢ (rec(har, ω)‘∅) = ω |
| 5 | 2, 4 | eqtri 2753 | 1 ⊢ (ℵ‘∅) = ω |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4298 ‘cfv 6513 ωcom 7844 reccrdg 8379 harchar 9515 ℵcale 9895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 ax-inf2 9600 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-aleph 9899 |
| This theorem is referenced by: alephon 10028 alephcard 10029 alephgeom 10041 cardaleph 10048 alephfplem1 10063 pwcfsdom 10542 alephom 10544 winalim2 10655 aleph1re 16219 aleph1min 43539 |
| Copyright terms: Public domain | W3C validator |