![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > carduniima | Structured version Visualization version GIF version |
Description: The union of the image of a mapping to cardinals is a cardinal. Proposition 11.16 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.) |
Ref | Expression |
---|---|
carduniima | ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran ℵ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6086 | . . . . 5 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → Fun 𝐹) | |
2 | funimaexg 6013 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) | |
3 | 1, 2 | sylan 487 | . . . 4 ⊢ ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) |
4 | 3 | expcom 450 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹 “ 𝐴) ∈ V)) |
5 | ffn 6083 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → 𝐹 Fn 𝐴) | |
6 | fnima 6048 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹 “ 𝐴) = ran 𝐹) |
8 | frn 6091 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → ran 𝐹 ⊆ (ω ∪ ran ℵ)) | |
9 | 7, 8 | eqsstrd 3672 | . . . . . . 7 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹 “ 𝐴) ⊆ (ω ∪ ran ℵ)) |
10 | 9 | sseld 3635 | . . . . . 6 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝑥 ∈ (𝐹 “ 𝐴) → 𝑥 ∈ (ω ∪ ran ℵ))) |
11 | iscard3 8954 | . . . . . 6 ⊢ ((card‘𝑥) = 𝑥 ↔ 𝑥 ∈ (ω ∪ ran ℵ)) | |
12 | 10, 11 | syl6ibr 242 | . . . . 5 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝑥 ∈ (𝐹 “ 𝐴) → (card‘𝑥) = 𝑥)) |
13 | 12 | ralrimiv 2994 | . . . 4 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∀𝑥 ∈ (𝐹 “ 𝐴)(card‘𝑥) = 𝑥) |
14 | carduni 8845 | . . . 4 ⊢ ((𝐹 “ 𝐴) ∈ V → (∀𝑥 ∈ (𝐹 “ 𝐴)(card‘𝑥) = 𝑥 → (card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴))) | |
15 | 13, 14 | syl5 34 | . . 3 ⊢ ((𝐹 “ 𝐴) ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴))) |
16 | 4, 15 | syli 39 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴))) |
17 | iscard3 8954 | . 2 ⊢ ((card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴) ↔ ∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran ℵ)) | |
18 | 16, 17 | syl6ib 241 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran ℵ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ∀wral 2941 Vcvv 3231 ∪ cun 3605 ∪ cuni 4468 ran crn 5144 “ cima 5146 Fun wfun 5920 Fn wfn 5921 ⟶wf 5922 ‘cfv 5926 ωcom 7107 cardccrd 8799 ℵcale 8800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-oi 8456 df-har 8504 df-card 8803 df-aleph 8804 |
This theorem is referenced by: cardinfima 8958 |
Copyright terms: Public domain | W3C validator |