Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn3 Structured version   Visualization version   GIF version

Theorem cdlemn3 36005
Description: Part of proof of Lemma N of [Crawley] p. 121 line 31. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
cdlemn3.l = (le‘𝐾)
cdlemn3.a 𝐴 = (Atoms‘𝐾)
cdlemn3.p 𝑃 = ((oc‘𝐾)‘𝑊)
cdlemn3.h 𝐻 = (LHyp‘𝐾)
cdlemn3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn3.f 𝐹 = (𝑇 (𝑃) = 𝑄)
cdlemn3.g 𝐺 = (𝑇 (𝑃) = 𝑅)
cdlemn3.j 𝐽 = (𝑇 (𝑄) = 𝑅)
Assertion
Ref Expression
cdlemn3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽𝐹) = 𝐺)
Distinct variable groups:   ,   𝐴,   ,𝐻   ,𝐾   𝑃,   𝑄,   𝑅,   𝑇,   ,𝑊
Allowed substitution hints:   𝐹()   𝐺()   𝐽()

Proof of Theorem cdlemn3
StepHypRef Expression
1 simp1 1059 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 cdlemn3.l . . . . . . . . . 10 = (le‘𝐾)
3 cdlemn3.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
4 cdlemn3.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
5 cdlemn3.p . . . . . . . . . 10 𝑃 = ((oc‘𝐾)‘𝑊)
62, 3, 4, 5lhpocnel2 34824 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
763ad2ant1 1080 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp2 1060 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
9 cdlemn3.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 cdlemn3.f . . . . . . . . 9 𝐹 = (𝑇 (𝑃) = 𝑄)
112, 3, 4, 9, 10ltrniotacl 35386 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
121, 7, 8, 11syl3anc 1323 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐹𝑇)
13 eqid 2621 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1413, 4, 9ltrn1o 34929 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
151, 12, 14syl2anc 692 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
16 f1of 6104 . . . . . 6 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾))
1715, 16syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾))
187simpld 475 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑃𝐴)
1913, 3atbase 34095 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2018, 19syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑃 ∈ (Base‘𝐾))
21 fvco3 6242 . . . . 5 ((𝐹:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → ((𝐽𝐹)‘𝑃) = (𝐽‘(𝐹𝑃)))
2217, 20, 21syl2anc 692 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝐽𝐹)‘𝑃) = (𝐽‘(𝐹𝑃)))
232, 3, 4, 9, 10ltrniotaval 35388 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑃) = 𝑄)
241, 7, 8, 23syl3anc 1323 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐹𝑃) = 𝑄)
2524fveq2d 6162 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽‘(𝐹𝑃)) = (𝐽𝑄))
26 cdlemn3.j . . . . 5 𝐽 = (𝑇 (𝑄) = 𝑅)
272, 3, 4, 9, 26ltrniotaval 35388 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽𝑄) = 𝑅)
2822, 25, 273eqtrd 2659 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝐽𝐹)‘𝑃) = 𝑅)
29 cdlemn3.g . . . . 5 𝐺 = (𝑇 (𝑃) = 𝑅)
302, 3, 4, 9, 29ltrniotaval 35388 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐺𝑃) = 𝑅)
317, 30syld3an2 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐺𝑃) = 𝑅)
3228, 31eqtr4d 2658 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝐽𝐹)‘𝑃) = (𝐺𝑃))
332, 3, 4, 9, 26ltrniotacl 35386 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐽𝑇)
344, 9ltrnco 35526 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐽𝑇𝐹𝑇) → (𝐽𝐹) ∈ 𝑇)
351, 33, 12, 34syl3anc 1323 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽𝐹) ∈ 𝑇)
362, 3, 4, 9, 29ltrniotacl 35386 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐺𝑇)
377, 36syld3an2 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐺𝑇)
382, 3, 4, 9ltrneq3 35014 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝐹) ∈ 𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐽𝐹)‘𝑃) = (𝐺𝑃) ↔ (𝐽𝐹) = 𝐺))
391, 35, 37, 7, 38syl121anc 1328 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (((𝐽𝐹)‘𝑃) = (𝐺𝑃) ↔ (𝐽𝐹) = 𝐺))
4032, 39mpbid 222 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4623  ccom 5088  wf 5853  1-1-ontowf1o 5856  cfv 5857  crio 6575  Basecbs 15800  lecple 15888  occoc 15889  Atomscatm 34069  HLchlt 34156  LHypclh 34789  LTrncltrn 34906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-riotaBAD 33758
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-undef 7359  df-map 7819  df-preset 16868  df-poset 16886  df-plt 16898  df-lub 16914  df-glb 16915  df-join 16916  df-meet 16917  df-p0 16979  df-p1 16980  df-lat 16986  df-clat 17048  df-oposet 33982  df-ol 33984  df-oml 33985  df-covers 34072  df-ats 34073  df-atl 34104  df-cvlat 34128  df-hlat 34157  df-llines 34303  df-lplanes 34304  df-lvols 34305  df-lines 34306  df-psubsp 34308  df-pmap 34309  df-padd 34601  df-lhyp 34793  df-laut 34794  df-ldil 34909  df-ltrn 34910  df-trl 34965
This theorem is referenced by:  cdlemn4  36006
  Copyright terms: Public domain W3C validator