MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknscsh Structured version   Visualization version   GIF version

Theorem clwwlknscsh 27841
Description: The set of cyclical shifts of a word representing a closed walk is the set of closed walks represented by cyclical shifts of a word. (Contributed by Alexander van der Vekens, 15-Jun-2018.) (Revised by AV, 30-Apr-2021.)
Assertion
Ref Expression
clwwlknscsh ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)})
Distinct variable groups:   𝑛,𝐺,𝑦   𝑛,𝑁,𝑦   𝑛,𝑊,𝑦

Proof of Theorem clwwlknscsh
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2825 . . . 4 (𝑦 = 𝑥 → (𝑦 = (𝑊 cyclShift 𝑛) ↔ 𝑥 = (𝑊 cyclShift 𝑛)))
21rexbidv 3297 . . 3 (𝑦 = 𝑥 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)))
32cbvrabv 3491 . 2 {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} = {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)}
4 eqid 2821 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
54clwwlknwrd 27812 . . . . . . 7 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → 𝑤 ∈ Word (Vtx‘𝐺))
65ad2antrl 726 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → 𝑤 ∈ Word (Vtx‘𝐺))
7 simprr 771 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))
86, 7jca 514 . . . . 5 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
9 simprr 771 . . . . . . . . . . . . 13 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) → 𝑊 ∈ (𝑁 ClWWalksN 𝐺))
10 simpllr 774 . . . . . . . . . . . . 13 ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → 𝑛 ∈ (0...𝑁))
11 clwwnisshclwwsn 27838 . . . . . . . . . . . . 13 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑛 ∈ (0...𝑁)) → (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺))
129, 10, 11syl2an2r 683 . . . . . . . . . . . 12 ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺))
13 eleq1 2900 . . . . . . . . . . . . 13 (𝑤 = (𝑊 cyclShift 𝑛) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺)))
1413adantl 484 . . . . . . . . . . . 12 ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺)))
1512, 14mpbird 259 . . . . . . . . . . 11 ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))
1615exp31 422 . . . . . . . . . 10 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) → ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤 = (𝑊 cyclShift 𝑛) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))))
1716com23 86 . . . . . . . . 9 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) → (𝑤 = (𝑊 cyclShift 𝑛) → ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))))
1817rexlimdva 3284 . . . . . . . 8 (𝑤 ∈ Word (Vtx‘𝐺) → (∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛) → ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))))
1918imp 409 . . . . . . 7 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)) → ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺)))
2019impcom 410 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))
21 simprr 771 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))
2220, 21jca 514 . . . . 5 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
238, 22impbida 799 . . . 4 ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))))
24 eqeq1 2825 . . . . . 6 (𝑥 = 𝑤 → (𝑥 = (𝑊 cyclShift 𝑛) ↔ 𝑤 = (𝑊 cyclShift 𝑛)))
2524rexbidv 3297 . . . . 5 (𝑥 = 𝑤 → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
2625elrab 3680 . . . 4 (𝑤 ∈ {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)} ↔ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
27 eqeq1 2825 . . . . . 6 (𝑦 = 𝑤 → (𝑦 = (𝑊 cyclShift 𝑛) ↔ 𝑤 = (𝑊 cyclShift 𝑛)))
2827rexbidv 3297 . . . . 5 (𝑦 = 𝑤 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
2928elrab 3680 . . . 4 (𝑤 ∈ {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
3023, 26, 293bitr4g 316 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤 ∈ {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)} ↔ 𝑤 ∈ {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)}))
3130eqrdv 2819 . 2 ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)})
323, 31syl5eq 2868 1 ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3139  {crab 3142  cfv 6355  (class class class)co 7156  0cc0 10537  0cn0 11898  ...cfz 12893  Word cword 13862   cyclShift ccsh 14150  Vtxcvtx 26781   ClWWalksN cclwwlkn 27802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-hash 13692  df-word 13863  df-lsw 13915  df-concat 13923  df-substr 14003  df-pfx 14033  df-csh 14151  df-clwwlk 27760  df-clwwlkn 27803
This theorem is referenced by:  hashecclwwlkn1  27856  umgrhashecclwwlk  27857
  Copyright terms: Public domain W3C validator