![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt11f | Structured version Visualization version GIF version |
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmpt11.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) |
cnmpt11f.f | ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) |
Ref | Expression |
---|---|
cnmpt11f | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝐽 Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptid.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
2 | cnmpt11.a | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) | |
3 | cntop2 21093 | . . . 4 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Top) |
5 | eqid 2651 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
6 | 5 | toptopon 20770 | . . 3 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
7 | 4, 6 | sylib 208 | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
8 | cnmpt11f.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) | |
9 | eqid 2651 | . . . . . 6 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
10 | 5, 9 | cnf 21098 | . . . . 5 ⊢ (𝐹 ∈ (𝐾 Cn 𝐿) → 𝐹:∪ 𝐾⟶∪ 𝐿) |
11 | 8, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:∪ 𝐾⟶∪ 𝐿) |
12 | 11 | feqmptd 6288 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ ∪ 𝐾 ↦ (𝐹‘𝑦))) |
13 | 12, 8 | eqeltrrd 2731 | . 2 ⊢ (𝜑 → (𝑦 ∈ ∪ 𝐾 ↦ (𝐹‘𝑦)) ∈ (𝐾 Cn 𝐿)) |
14 | fveq2 6229 | . 2 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
15 | 1, 2, 7, 13, 14 | cnmpt11 21514 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝐽 Cn 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ∪ cuni 4468 ↦ cmpt 4762 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 Topctop 20746 TopOnctopon 20763 Cn ccn 21076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-map 7901 df-top 20747 df-topon 20764 df-cn 21079 |
This theorem is referenced by: cnmpt12f 21517 tgpmulg 21944 prdstgpd 21975 pcorevcl 22871 pcorevlem 22872 logcn 24438 loglesqrt 24544 efrlim 24741 cvmliftlem8 31400 knoppcnlem10 32617 areacirclem2 33631 areacirclem4 33633 |
Copyright terms: Public domain | W3C validator |