Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem2 Structured version   Visualization version   GIF version

Theorem areacirclem2 33154
Description: Endpoint-inclusive continuity of Cartesian ordinate of circle. (Contributed by Brendan Leahy, 29-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Assertion
Ref Expression
areacirclem2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Distinct variable group:   𝑡,𝑅

Proof of Theorem areacirclem2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 resqcl 12874 . . . . . . . 8 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
21adantr 481 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑅↑2) ∈ ℝ)
32adantr 481 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ)
4 renegcl 10291 . . . . . . . . . 10 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ)
5 iccssre 12200 . . . . . . . . . 10 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
64, 5mpancom 702 . . . . . . . . 9 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ)
76sselda 3584 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
87resqcld 12978 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ)
98adantlr 750 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ)
103, 9resubcld 10405 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
11 elicc2 12183 . . . . . . . . 9 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
124, 11mpancom 702 . . . . . . . 8 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
1312adantr 481 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
1413ad2ant1 1080 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
15 resqcl 12874 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
16153ad2ant3 1082 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
1714, 16subge0d 10564 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (𝑡↑2) ≤ (𝑅↑2)))
18 absresq 13979 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ → ((abs‘𝑡)↑2) = (𝑡↑2))
19183ad2ant3 1082 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2))
2019breq1d 4625 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) ≤ (𝑅↑2) ↔ (𝑡↑2) ≤ (𝑅↑2)))
2117, 20bitr4d 271 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
22 recn 9973 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
2322abscld 14112 . . . . . . . . . . . . . 14 (𝑡 ∈ ℝ → (abs‘𝑡) ∈ ℝ)
24233ad2ant3 1082 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
25 simp1 1059 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
2622absge0d 14120 . . . . . . . . . . . . . 14 (𝑡 ∈ ℝ → 0 ≤ (abs‘𝑡))
27263ad2ant3 1082 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
28 simp2 1060 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ 𝑅)
2924, 25, 27, 28le2sqd 12987 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
30 simp3 1061 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
3130, 25absled 14106 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅𝑡𝑡𝑅)))
3221, 29, 313bitr2d 296 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (-𝑅𝑡𝑡𝑅)))
3332biimprd 238 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
34333expa 1262 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
3534exp4b 631 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2))))))
36353impd 1278 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
3713, 36sylbid 230 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
3837imp 445 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
39 elrege0 12223 . . . . 5 (((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞) ↔ (((𝑅↑2) − (𝑡↑2)) ∈ ℝ ∧ 0 ≤ ((𝑅↑2) − (𝑡↑2))))
4010, 38, 39sylanbrc 697 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞))
41 fvres 6166 . . . 4 (((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞) → ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2))) = (√‘((𝑅↑2) − (𝑡↑2))))
4240, 41syl 17 . . 3 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2))) = (√‘((𝑅↑2) − (𝑡↑2))))
4342mpteq2dva 4706 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2)))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))))
44 eqid 2621 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4544cnfldtopon 22499 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
46 ax-resscn 9940 . . . . . . 7 ℝ ⊆ ℂ
476, 46syl6ss 3596 . . . . . 6 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℂ)
48 resttopon 20878 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (-𝑅[,]𝑅) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
4945, 47, 48sylancr 694 . . . . 5 (𝑅 ∈ ℝ → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
5049adantr 481 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
5147resmptd 5413 . . . . . . 7 (𝑅 ∈ ℝ → ((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ↾ (-𝑅[,]𝑅)) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))))
5245a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
53 recn 9973 . . . . . . . . . . 11 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
5453sqcld 12949 . . . . . . . . . 10 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℂ)
5552, 52, 54cnmptc 21378 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝑡 ∈ ℂ ↦ (𝑅↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
5644sqcn 22590 . . . . . . . . . 10 (𝑡 ∈ ℂ ↦ (𝑡↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
5756a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝑡 ∈ ℂ ↦ (𝑡↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
5844subcn 22582 . . . . . . . . . 10 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
5958a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
6052, 55, 57, 59cnmpt12f 21382 . . . . . . . 8 (𝑅 ∈ ℝ → (𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
6145toponunii 20646 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
6261cnrest 21002 . . . . . . . 8 (((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ (-𝑅[,]𝑅) ⊆ ℂ) → ((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ↾ (-𝑅[,]𝑅)) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)))
6360, 47, 62syl2anc 692 . . . . . . 7 (𝑅 ∈ ℝ → ((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ↾ (-𝑅[,]𝑅)) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)))
6451, 63eqeltrrd 2699 . . . . . 6 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)))
6564adantr 481 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)))
6645a1i 11 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
67 eqid 2621 . . . . . . . 8 (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2)))
6867rnmpt 5333 . . . . . . 7 ran (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) = {𝑢 ∣ ∃𝑡 ∈ (-𝑅[,]𝑅)𝑢 = ((𝑅↑2) − (𝑡↑2))}
69 simp3 1061 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑢 = ((𝑅↑2) − (𝑡↑2))) → 𝑢 = ((𝑅↑2) − (𝑡↑2)))
70403adant3 1079 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑢 = ((𝑅↑2) − (𝑡↑2))) → ((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞))
7169, 70eqeltrd 2698 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑢 = ((𝑅↑2) − (𝑡↑2))) → 𝑢 ∈ (0[,)+∞))
7271rexlimdv3a 3026 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (∃𝑡 ∈ (-𝑅[,]𝑅)𝑢 = ((𝑅↑2) − (𝑡↑2)) → 𝑢 ∈ (0[,)+∞)))
7372abssdv 3657 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → {𝑢 ∣ ∃𝑡 ∈ (-𝑅[,]𝑅)𝑢 = ((𝑅↑2) − (𝑡↑2))} ⊆ (0[,)+∞))
7468, 73syl5eqss 3630 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ran (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ⊆ (0[,)+∞))
75 rge0ssre 12225 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
7675, 46sstri 3593 . . . . . . 7 (0[,)+∞) ⊆ ℂ
7776a1i 11 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (0[,)+∞) ⊆ ℂ)
78 cnrest2 21003 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ⊆ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (0[,)+∞)))))
7966, 74, 77, 78syl3anc 1323 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (0[,)+∞)))))
8065, 79mpbid 222 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (0[,)+∞))))
81 ssid 3605 . . . . . . . 8 ℂ ⊆ ℂ
82 cncfss 22615 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((0[,)+∞)–cn→ℝ) ⊆ ((0[,)+∞)–cn→ℂ))
8346, 81, 82mp2an 707 . . . . . . 7 ((0[,)+∞)–cn→ℝ) ⊆ ((0[,)+∞)–cn→ℂ)
84 resqrtcn 24397 . . . . . . 7 (√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ)
8583, 84sselii 3581 . . . . . 6 (√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℂ)
86 eqid 2621 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (0[,)+∞)) = ((TopOpen‘ℂfld) ↾t (0[,)+∞))
87 eqid 2621 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t ℂ) = ((TopOpen‘ℂfld) ↾t ℂ)
8844, 86, 87cncfcn 22625 . . . . . . 7 (((0[,)+∞) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((0[,)+∞)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
8976, 81, 88mp2an 707 . . . . . 6 ((0[,)+∞)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t ℂ))
9085, 89eleqtri 2696 . . . . 5 (√ ↾ (0[,)+∞)) ∈ (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t ℂ))
9190a1i 11 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (√ ↾ (0[,)+∞)) ∈ (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
9250, 80, 91cnmpt11f 21380 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2)))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
93 eqid 2621 . . . . . 6 ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) = ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅))
9444, 93, 87cncfcn 22625 . . . . 5 (((-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
9547, 81, 94sylancl 693 . . . 4 (𝑅 ∈ ℝ → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
9695adantr 481 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
9792, 96eleqtrrd 2701 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
9843, 97eqeltrrd 2699 1 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  {cab 2607  wrex 2908  wss 3556   class class class wbr 4615  cmpt 4675  ran crn 5077  cres 5078  cfv 5849  (class class class)co 6607  cc 9881  cr 9882  0cc0 9883  +∞cpnf 10018  cle 10022  cmin 10213  -cneg 10214  2c2 11017  [,)cico 12122  [,]cicc 12123  cexp 12803  csqrt 13910  abscabs 13911  t crest 16005  TopOpenctopn 16006  fldccnfld 19668  TopOnctopon 20637   Cn ccn 20941   ×t ctx 21276  cnccncf 22592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961  ax-addf 9962  ax-mulf 9963
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-er 7690  df-map 7807  df-pm 7808  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-fi 8264  df-sup 8295  df-inf 8296  df-oi 8362  df-card 8712  df-cda 8937  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-q 11736  df-rp 11780  df-xneg 11893  df-xadd 11894  df-xmul 11895  df-ioo 12124  df-ioc 12125  df-ico 12126  df-icc 12127  df-fz 12272  df-fzo 12410  df-fl 12536  df-mod 12612  df-seq 12745  df-exp 12804  df-fac 13004  df-bc 13033  df-hash 13061  df-shft 13744  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-limsup 14139  df-clim 14156  df-rlim 14157  df-sum 14354  df-ef 14726  df-sin 14728  df-cos 14729  df-tan 14730  df-pi 14731  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-starv 15880  df-sca 15881  df-vsca 15882  df-ip 15883  df-tset 15884  df-ple 15885  df-ds 15888  df-unif 15889  df-hom 15890  df-cco 15891  df-rest 16007  df-topn 16008  df-0g 16026  df-gsum 16027  df-topgen 16028  df-pt 16029  df-prds 16032  df-xrs 16086  df-qtop 16091  df-imas 16092  df-xps 16094  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-submnd 17260  df-mulg 17465  df-cntz 17674  df-cmn 18119  df-psmet 19660  df-xmet 19661  df-met 19662  df-bl 19663  df-mopn 19664  df-fbas 19665  df-fg 19666  df-cnfld 19669  df-top 20621  df-topon 20638  df-topsp 20651  df-bases 20664  df-cld 20736  df-ntr 20737  df-cls 20738  df-nei 20815  df-lp 20853  df-perf 20854  df-cn 20944  df-cnp 20945  df-haus 21032  df-cmp 21103  df-tx 21278  df-hmeo 21471  df-fil 21563  df-fm 21655  df-flim 21656  df-flf 21657  df-xms 22038  df-ms 22039  df-tms 22040  df-cncf 22594  df-limc 23543  df-dv 23544  df-log 24214  df-cxp 24215
This theorem is referenced by:  areacirclem3  33155  areacirclem4  33156  areacirc  33158
  Copyright terms: Public domain W3C validator