MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efrlim Structured version   Visualization version   GIF version

Theorem efrlim 25547
Description: The limit of the sequence (1 + 𝐴 / 𝑘)↑𝑘 is the exponential function. This is often taken as an alternate definition of the exponential function (see also dfef2 25548). (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypothesis
Ref Expression
efrlim.1 𝑆 = (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1)))
Assertion
Ref Expression
efrlim (𝐴 ∈ ℂ → (𝑘 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟 (exp‘𝐴))
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝑆(𝑘)

Proof of Theorem efrlim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rge0ssre 12845 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
2 ax-resscn 10594 . . . . . . . 8 ℝ ⊆ ℂ
31, 2sstri 3976 . . . . . . 7 (0[,)+∞) ⊆ ℂ
43sseli 3963 . . . . . 6 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℂ)
5 simpll 765 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 𝐴 ∈ ℂ)
6 1cnd 10636 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 1 ∈ ℂ)
7 simplr 767 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 𝑥 ∈ ℂ)
8 ax-1ne0 10606 . . . . . . . . . . . 12 1 ≠ 0
98a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 1 ≠ 0)
10 simpr 487 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → ¬ 𝑥 = 0)
1110neqned 3023 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 𝑥 ≠ 0)
125, 6, 7, 9, 11divdiv2d 11448 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (𝐴 / (1 / 𝑥)) = ((𝐴 · 𝑥) / 1))
13 mulcl 10621 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
1413adantr 483 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (𝐴 · 𝑥) ∈ ℂ)
1514div1d 11408 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → ((𝐴 · 𝑥) / 1) = (𝐴 · 𝑥))
1612, 15eqtrd 2856 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (𝐴 / (1 / 𝑥)) = (𝐴 · 𝑥))
1716oveq2d 7172 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 / (1 / 𝑥))) = (1 + (𝐴 · 𝑥)))
1817oveq1d 7171 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)) = ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))
1918ifeq2da 4498 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥))) = if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))))
204, 19sylan2 594 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (0[,)+∞)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥))) = if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))))
2120mpteq2dva 5161 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) = (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))))
22 resmpt 5905 . . . . 5 ((0[,)+∞) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))))
233, 22ax-mp 5 . . . 4 ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))))
2421, 23syl6eqr 2874 . . 3 (𝐴 ∈ ℂ → (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) = ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)))
25 0e0icopnf 12847 . . . . 5 0 ∈ (0[,)+∞)
2625a1i 11 . . . 4 (𝐴 ∈ ℂ → 0 ∈ (0[,)+∞))
27 eqeq2 2833 . . . . . . . . 9 ((exp‘(𝐴 · 1)) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) → (if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · 1)) ↔ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))))
28 eqeq2 2833 . . . . . . . . 9 ((exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) → (if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) ↔ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))))
29 efrlim.1 . . . . . . . . . . . . . 14 𝑆 = (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1)))
30 cnxmet 23381 . . . . . . . . . . . . . . 15 (abs ∘ − ) ∈ (∞Met‘ℂ)
31 0cnd 10634 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ∈ ℂ)
32 abscl 14638 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
33 peano2re 10813 . . . . . . . . . . . . . . . . . . 19 ((abs‘𝐴) ∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ)
3432, 33syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((abs‘𝐴) + 1) ∈ ℝ)
35 0red 10644 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → 0 ∈ ℝ)
36 absge0 14647 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
3732ltp1d 11570 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (abs‘𝐴) < ((abs‘𝐴) + 1))
3835, 32, 34, 36, 37lelttrd 10798 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → 0 < ((abs‘𝐴) + 1))
3934, 38elrpd 12429 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((abs‘𝐴) + 1) ∈ ℝ+)
4039rpreccld 12442 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (1 / ((abs‘𝐴) + 1)) ∈ ℝ+)
4140rpxrd 12433 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (1 / ((abs‘𝐴) + 1)) ∈ ℝ*)
42 blssm 23028 . . . . . . . . . . . . . . 15 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (1 / ((abs‘𝐴) + 1)) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ⊆ ℂ)
4330, 31, 41, 42mp3an2i 1462 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ⊆ ℂ)
4429, 43eqsstrid 4015 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → 𝑆 ⊆ ℂ)
4544sselda 3967 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 𝑥 ∈ ℂ)
46 mul0or 11280 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴 · 𝑥) = 0 ↔ (𝐴 = 0 ∨ 𝑥 = 0)))
4745, 46syldan 593 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝐴 · 𝑥) = 0 ↔ (𝐴 = 0 ∨ 𝑥 = 0)))
4847biimpa 479 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 · 𝑥) = 0) → (𝐴 = 0 ∨ 𝑥 = 0))
497, 11reccld 11409 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (1 / 𝑥) ∈ ℂ)
5045, 49syldanl 603 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ 𝑥 = 0) → (1 / 𝑥) ∈ ℂ)
5150adantlr 713 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1 / 𝑥) ∈ ℂ)
52511cxpd 25290 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1↑𝑐(1 / 𝑥)) = 1)
53 simplr 767 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → 𝐴 = 0)
5453oveq1d 7171 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (𝐴 · 𝑥) = (0 · 𝑥))
5545ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → 𝑥 ∈ ℂ)
5655mul02d 10838 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (0 · 𝑥) = 0)
5754, 56eqtrd 2856 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (𝐴 · 𝑥) = 0)
5857oveq2d 7172 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 · 𝑥)) = (1 + 0))
59 1p0e1 11762 . . . . . . . . . . . . . . . . 17 (1 + 0) = 1
6058, 59syl6eq 2872 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 · 𝑥)) = 1)
6160oveq1d 7171 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) = (1↑𝑐(1 / 𝑥)))
6253fveq2d 6674 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (exp‘𝐴) = (exp‘0))
63 ef0 15444 . . . . . . . . . . . . . . . 16 (exp‘0) = 1
6462, 63syl6eq 2872 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (exp‘𝐴) = 1)
6552, 61, 643eqtr4d 2866 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) = (exp‘𝐴))
6665ifeq2da 4498 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if(𝑥 = 0, (exp‘𝐴), (exp‘𝐴)))
67 ifid 4506 . . . . . . . . . . . . 13 if(𝑥 = 0, (exp‘𝐴), (exp‘𝐴)) = (exp‘𝐴)
6866, 67syl6eq 2872 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴))
69 iftrue 4473 . . . . . . . . . . . . 13 (𝑥 = 0 → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴))
7069adantl 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝑥 = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴))
7168, 70jaodan 954 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴))
72 mulid1 10639 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
7372ad2antrr 724 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → (𝐴 · 1) = 𝐴)
7473fveq2d 6674 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → (exp‘(𝐴 · 1)) = (exp‘𝐴))
7571, 74eqtr4d 2859 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · 1)))
7648, 75syldan 593 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 · 𝑥) = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · 1)))
77 mulne0b 11281 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) ↔ (𝐴 · 𝑥) ≠ 0))
7845, 77syldan 593 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) ↔ (𝐴 · 𝑥) ≠ 0))
79 df-ne 3017 . . . . . . . . . . . 12 ((𝐴 · 𝑥) ≠ 0 ↔ ¬ (𝐴 · 𝑥) = 0)
8078, 79syl6bb 289 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) ↔ ¬ (𝐴 · 𝑥) = 0))
81 simprr 771 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝑥 ≠ 0)
8281neneqd 3021 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ¬ 𝑥 = 0)
8382iffalsed 4478 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))
84 ax-1cn 10595 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
8545, 13syldan 593 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝐴 · 𝑥) ∈ ℂ)
86 addcl 10619 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝐴 · 𝑥) ∈ ℂ) → (1 + (𝐴 · 𝑥)) ∈ ℂ)
8784, 85, 86sylancr 589 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 + (𝐴 · 𝑥)) ∈ ℂ)
8887adantr 483 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 + (𝐴 · 𝑥)) ∈ ℂ)
89 eqid 2821 . . . . . . . . . . . . . . . . . . 19 (1(ball‘(abs ∘ − ))1) = (1(ball‘(abs ∘ − ))1)
9089dvlog2lem 25235 . . . . . . . . . . . . . . . . . 18 (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ (-∞(,]0))
91 eqid 2821 . . . . . . . . . . . . . . . . . . 19 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
9291logdmss 25225 . . . . . . . . . . . . . . . . . 18 (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})
9390, 92sstri 3976 . . . . . . . . . . . . . . . . 17 (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ {0})
94 eqid 2821 . . . . . . . . . . . . . . . . . . . . . 22 (abs ∘ − ) = (abs ∘ − )
9594cnmetdval 23379 . . . . . . . . . . . . . . . . . . . . 21 (((1 + (𝐴 · 𝑥)) ∈ ℂ ∧ 1 ∈ ℂ) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) = (abs‘((1 + (𝐴 · 𝑥)) − 1)))
9687, 84, 95sylancl 588 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) = (abs‘((1 + (𝐴 · 𝑥)) − 1)))
97 pncan2 10893 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ (𝐴 · 𝑥) ∈ ℂ) → ((1 + (𝐴 · 𝑥)) − 1) = (𝐴 · 𝑥))
9884, 85, 97sylancr 589 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥)) − 1) = (𝐴 · 𝑥))
9998fveq2d 6674 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘((1 + (𝐴 · 𝑥)) − 1)) = (abs‘(𝐴 · 𝑥)))
10096, 99eqtrd 2856 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) = (abs‘(𝐴 · 𝑥)))
10185abscld 14796 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝐴 · 𝑥)) ∈ ℝ)
10234adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((abs‘𝐴) + 1) ∈ ℝ)
10345abscld 14796 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘𝑥) ∈ ℝ)
104102, 103remulcld 10671 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (((abs‘𝐴) + 1) · (abs‘𝑥)) ∈ ℝ)
105 1red 10642 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 1 ∈ ℝ)
106 absmul 14654 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝐴 · 𝑥)) = ((abs‘𝐴) · (abs‘𝑥)))
10745, 106syldan 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝐴 · 𝑥)) = ((abs‘𝐴) · (abs‘𝑥)))
10832adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘𝐴) ∈ ℝ)
109108, 33syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((abs‘𝐴) + 1) ∈ ℝ)
11045absge0d 14804 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 0 ≤ (abs‘𝑥))
111108lep1d 11571 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘𝐴) ≤ ((abs‘𝐴) + 1))
112108, 109, 103, 110, 111lemul1ad 11579 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((abs‘𝐴) · (abs‘𝑥)) ≤ (((abs‘𝐴) + 1) · (abs‘𝑥)))
113107, 112eqbrtrd 5088 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝐴 · 𝑥)) ≤ (((abs‘𝐴) + 1) · (abs‘𝑥)))
114 0cn 10633 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℂ
11594cnmetdval 23379 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
11645, 114, 115sylancl 588 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
11745subid1d 10986 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥 − 0) = 𝑥)
118117fveq2d 6674 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝑥 − 0)) = (abs‘𝑥))
119116, 118eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥(abs ∘ − )0) = (abs‘𝑥))
120 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 𝑥𝑆)
121120, 29eleqtrdi 2923 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 𝑥 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))))
12230a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs ∘ − ) ∈ (∞Met‘ℂ))
12341adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 / ((abs‘𝐴) + 1)) ∈ ℝ*)
124 0cnd 10634 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 0 ∈ ℂ)
125 elbl3 23002 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (1 / ((abs‘𝐴) + 1)) ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ↔ (𝑥(abs ∘ − )0) < (1 / ((abs‘𝐴) + 1))))
126122, 123, 124, 45, 125syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ↔ (𝑥(abs ∘ − )0) < (1 / ((abs‘𝐴) + 1))))
127121, 126mpbid 234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥(abs ∘ − )0) < (1 / ((abs‘𝐴) + 1)))
128119, 127eqbrtrrd 5090 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘𝑥) < (1 / ((abs‘𝐴) + 1)))
12938adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 0 < ((abs‘𝐴) + 1))
130 ltmuldiv2 11514 . . . . . . . . . . . . . . . . . . . . . 22 (((abs‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((abs‘𝐴) + 1) ∈ ℝ ∧ 0 < ((abs‘𝐴) + 1))) → ((((abs‘𝐴) + 1) · (abs‘𝑥)) < 1 ↔ (abs‘𝑥) < (1 / ((abs‘𝐴) + 1))))
131103, 105, 109, 129, 130syl112anc 1370 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((((abs‘𝐴) + 1) · (abs‘𝑥)) < 1 ↔ (abs‘𝑥) < (1 / ((abs‘𝐴) + 1))))
132128, 131mpbird 259 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (((abs‘𝐴) + 1) · (abs‘𝑥)) < 1)
133101, 104, 105, 113, 132lelttrd 10798 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝐴 · 𝑥)) < 1)
134100, 133eqbrtrd 5088 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) < 1)
135 1rp 12394 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ+
136 rpxr 12399 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ ℝ+ → 1 ∈ ℝ*)
137135, 136mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 1 ∈ ℝ*)
138 1cnd 10636 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 1 ∈ ℂ)
139 elbl3 23002 . . . . . . . . . . . . . . . . . . 19 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (1 ∈ ℂ ∧ (1 + (𝐴 · 𝑥)) ∈ ℂ)) → ((1 + (𝐴 · 𝑥)) ∈ (1(ball‘(abs ∘ − ))1) ↔ ((1 + (𝐴 · 𝑥))(abs ∘ − )1) < 1))
140122, 137, 138, 87, 139syl22anc 836 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥)) ∈ (1(ball‘(abs ∘ − ))1) ↔ ((1 + (𝐴 · 𝑥))(abs ∘ − )1) < 1))
141134, 140mpbird 259 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 + (𝐴 · 𝑥)) ∈ (1(ball‘(abs ∘ − ))1))
14293, 141sseldi 3965 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 + (𝐴 · 𝑥)) ∈ (ℂ ∖ {0}))
143 eldifsni 4722 . . . . . . . . . . . . . . . 16 ((1 + (𝐴 · 𝑥)) ∈ (ℂ ∖ {0}) → (1 + (𝐴 · 𝑥)) ≠ 0)
144142, 143syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 + (𝐴 · 𝑥)) ≠ 0)
145144adantr 483 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 + (𝐴 · 𝑥)) ≠ 0)
14645adantr 483 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝑥 ∈ ℂ)
147146, 81reccld 11409 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ ℂ)
14888, 145, 147cxpefd 25295 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) = (exp‘((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥))))))
14987, 144logcld 25154 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (log‘(1 + (𝐴 · 𝑥))) ∈ ℂ)
150149adantr 483 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (log‘(1 + (𝐴 · 𝑥))) ∈ ℂ)
151147, 150mulcomd 10662 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥)))) = ((log‘(1 + (𝐴 · 𝑥))) · (1 / 𝑥)))
152 simpll 765 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝐴 ∈ ℂ)
153 simprl 769 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝐴 ≠ 0)
154152, 153dividd 11414 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (𝐴 / 𝐴) = 1)
155154oveq1d 7171 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((𝐴 / 𝐴) / 𝑥) = (1 / 𝑥))
156152, 152, 146, 153, 81divdiv1d 11447 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((𝐴 / 𝐴) / 𝑥) = (𝐴 / (𝐴 · 𝑥)))
157155, 156eqtr3d 2858 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) = (𝐴 / (𝐴 · 𝑥)))
158157oveq2d 7172 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((log‘(1 + (𝐴 · 𝑥))) · (1 / 𝑥)) = ((log‘(1 + (𝐴 · 𝑥))) · (𝐴 / (𝐴 · 𝑥))))
15985adantr 483 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (𝐴 · 𝑥) ∈ ℂ)
16078biimpa 479 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (𝐴 · 𝑥) ≠ 0)
161150, 152, 159, 160div12d 11452 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((log‘(1 + (𝐴 · 𝑥))) · (𝐴 / (𝐴 · 𝑥))) = (𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
162151, 158, 1613eqtrd 2860 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥)))) = (𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
163162fveq2d 6674 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (exp‘((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥))))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
16483, 148, 1633eqtrd 2860 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
165164ex 415 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
16680, 165sylbird 262 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (¬ (𝐴 · 𝑥) = 0 → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
167166imp 409 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
16827, 28, 76, 167ifbothda 4504 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
169168mpteq2dva 5161 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))))
17044resmptd 5908 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) = (𝑥𝑆 ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))))
171 1cnd 10636 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 · 𝑥) = 0) → 1 ∈ ℂ)
172149adantr 483 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → (log‘(1 + (𝐴 · 𝑥))) ∈ ℂ)
17385adantr 483 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → (𝐴 · 𝑥) ∈ ℂ)
174 simpr 487 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → ¬ (𝐴 · 𝑥) = 0)
175174neqned 3023 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → (𝐴 · 𝑥) ≠ 0)
176172, 173, 175divcld 11416 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)) ∈ ℂ)
177171, 176ifclda 4501 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) ∈ ℂ)
178 eqidd 2822 . . . . . . . 8 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
179 eqidd 2822 . . . . . . . 8 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))))
180 oveq2 7164 . . . . . . . . . 10 (𝑦 = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) → (𝐴 · 𝑦) = (𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
181180fveq2d 6674 . . . . . . . . 9 (𝑦 = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
182 oveq2 7164 . . . . . . . . . . 11 (if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) = 1 → (𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = (𝐴 · 1))
183182fveq2d 6674 . . . . . . . . . 10 (if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) = 1 → (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = (exp‘(𝐴 · 1)))
184 oveq2 7164 . . . . . . . . . . 11 (if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) = ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)) → (𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = (𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
185184fveq2d 6674 . . . . . . . . . 10 (if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) = ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)) → (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
186183, 185ifsb 4480 . . . . . . . . 9 (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
187181, 186syl6eq 2872 . . . . . . . 8 (𝑦 = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) → (exp‘(𝐴 · 𝑦)) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
188177, 178, 179, 187fmptco 6891 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))))
189169, 170, 1883eqtr4d 2866 . . . . . 6 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) = ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
190 eqidd 2822 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) = (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))))
191 eqidd 2822 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) = (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))))
192 eqeq1 2825 . . . . . . . . . . 11 (𝑦 = (1 + (𝐴 · 𝑥)) → (𝑦 = 1 ↔ (1 + (𝐴 · 𝑥)) = 1))
193 fveq2 6670 . . . . . . . . . . . 12 (𝑦 = (1 + (𝐴 · 𝑥)) → (log‘𝑦) = (log‘(1 + (𝐴 · 𝑥))))
194 oveq1 7163 . . . . . . . . . . . 12 (𝑦 = (1 + (𝐴 · 𝑥)) → (𝑦 − 1) = ((1 + (𝐴 · 𝑥)) − 1))
195193, 194oveq12d 7174 . . . . . . . . . . 11 (𝑦 = (1 + (𝐴 · 𝑥)) → ((log‘𝑦) / (𝑦 − 1)) = ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)))
196192, 195ifbieq2d 4492 . . . . . . . . . 10 (𝑦 = (1 + (𝐴 · 𝑥)) → if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1))) = if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1))))
197141, 190, 191, 196fmptco 6891 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))) = (𝑥𝑆 ↦ if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)))))
19859eqeq2i 2834 . . . . . . . . . . . 12 ((1 + (𝐴 · 𝑥)) = (1 + 0) ↔ (1 + (𝐴 · 𝑥)) = 1)
199138, 85, 124addcand 10843 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥)) = (1 + 0) ↔ (𝐴 · 𝑥) = 0))
200198, 199syl5bbr 287 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥)) = 1 ↔ (𝐴 · 𝑥) = 0))
20198oveq2d 7172 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)) = ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))
202200, 201ifbieq2d 4492 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1))) = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
203202mpteq2dva 5161 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
204197, 203eqtrd 2856 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
205 eqid 2821 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
206 eqid 2821 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
207206cnfldtopon 23391 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
208207a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
209 1cnd 10636 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → 1 ∈ ℂ)
210208, 208, 209cnmptc 22270 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ 1) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
211 id 22 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
212208, 208, 211cnmptc 22270 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ 𝐴) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
213208cnmptid 22269 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
214206mulcn 23475 . . . . . . . . . . . . . . 15 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
215214a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
216208, 212, 213, 215cnmpt12f 22274 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
217206addcn 23473 . . . . . . . . . . . . . 14 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
218217a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
219208, 210, 216, 218cnmpt12f 22274 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (1 + (𝐴 · 𝑥))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
220205, 208, 44, 219cnmpt1res 22284 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
221141fmpttd 6879 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))):𝑆⟶(1(ball‘(abs ∘ − ))1))
222221frnd 6521 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ran (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ⊆ (1(ball‘(abs ∘ − ))1))
223 difss 4108 . . . . . . . . . . . . . 14 (ℂ ∖ {0}) ⊆ ℂ
22493, 223sstri 3976 . . . . . . . . . . . . 13 (1(ball‘(abs ∘ − ))1) ⊆ ℂ
225224a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1(ball‘(abs ∘ − ))1) ⊆ ℂ)
226 cnrest2 21894 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ⊆ (1(ball‘(abs ∘ − ))1) ∧ (1(ball‘(abs ∘ − ))1) ⊆ ℂ) → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))))
227207, 222, 225, 226mp3an2i 1462 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))))
228220, 227mpbid 234 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1))))
229 blcntr 23023 . . . . . . . . . . . . 13 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (1 / ((abs‘𝐴) + 1)) ∈ ℝ+) → 0 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))))
23030, 31, 40, 229mp3an2i 1462 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 0 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))))
231230, 29eleqtrrdi 2924 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 0 ∈ 𝑆)
232 resttopon 21769 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
233207, 44, 232sylancr 589 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
234 toponuni 21522 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
235233, 234syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
236231, 235eleqtrd 2915 . . . . . . . . . 10 (𝐴 ∈ ℂ → 0 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
237 eqid 2821 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
238237cncnpi 21886 . . . . . . . . . 10 (((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1))) ∧ 0 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))‘0))
239228, 236, 238syl2anc 586 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))‘0))
240 cnelprrecn 10630 . . . . . . . . . . 11 ℂ ∈ {ℝ, ℂ}
241 logf1o 25148 . . . . . . . . . . . . . 14 log:(ℂ ∖ {0})–1-1-onto→ran log
242 f1of 6615 . . . . . . . . . . . . . 14 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
243241, 242ax-mp 5 . . . . . . . . . . . . 13 log:(ℂ ∖ {0})⟶ran log
244 logrncn 25146 . . . . . . . . . . . . . 14 (𝑥 ∈ ran log → 𝑥 ∈ ℂ)
245244ssriv 3971 . . . . . . . . . . . . 13 ran log ⊆ ℂ
246 fss 6527 . . . . . . . . . . . . 13 ((log:(ℂ ∖ {0})⟶ran log ∧ ran log ⊆ ℂ) → log:(ℂ ∖ {0})⟶ℂ)
247243, 245, 246mp2an 690 . . . . . . . . . . . 12 log:(ℂ ∖ {0})⟶ℂ
248 fssres 6544 . . . . . . . . . . . 12 ((log:(ℂ ∖ {0})⟶ℂ ∧ (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ {0})) → (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ℂ)
249247, 93, 248mp2an 690 . . . . . . . . . . 11 (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ℂ
250 blcntr 23023 . . . . . . . . . . . . . 14 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ+) → 1 ∈ (1(ball‘(abs ∘ − ))1))
25130, 84, 135, 250mp3an 1457 . . . . . . . . . . . . 13 1 ∈ (1(ball‘(abs ∘ − ))1)
252 ovex 7189 . . . . . . . . . . . . . 14 (1 / 𝑦) ∈ V
25389dvlog2 25236 . . . . . . . . . . . . . 14 (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1))) = (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))
254252, 253dmmpti 6492 . . . . . . . . . . . . 13 dom (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1))) = (1(ball‘(abs ∘ − ))1)
255251, 254eleqtrri 2912 . . . . . . . . . . . 12 1 ∈ dom (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))
256 eqid 2821 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) = ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1))
257253fveq1i 6671 . . . . . . . . . . . . . . . . 17 ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1) = ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))‘1)
258 oveq2 7164 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 1 → (1 / 𝑦) = (1 / 1))
259 1div1e1 11330 . . . . . . . . . . . . . . . . . . . 20 (1 / 1) = 1
260258, 259syl6eq 2872 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 1 → (1 / 𝑦) = 1)
261 eqid 2821 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦)) = (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))
262 1ex 10637 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
263260, 261, 262fvmpt 6768 . . . . . . . . . . . . . . . . . 18 (1 ∈ (1(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))‘1) = 1)
264251, 263ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))‘1) = 1
265257, 264eqtr2i 2845 . . . . . . . . . . . . . . . 16 1 = ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1)
266265a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → 1 = ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1))
267 fvres 6689 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) = (log‘𝑦))
268 fvres 6689 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘1) = (log‘1))
269251, 268mp1i 13 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘1) = (log‘1))
270 log1 25169 . . . . . . . . . . . . . . . . . . 19 (log‘1) = 0
271269, 270syl6eq 2872 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘1) = 0)
272267, 271oveq12d 7174 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → (((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)) = ((log‘𝑦) − 0))
27393sseli 3963 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → 𝑦 ∈ (ℂ ∖ {0}))
274 eldifsn 4719 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
275273, 274sylib 220 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
276 logcl 25152 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (log‘𝑦) ∈ ℂ)
277275, 276syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → (log‘𝑦) ∈ ℂ)
278277subid1d 10986 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log‘𝑦) − 0) = (log‘𝑦))
279272, 278eqtr2d 2857 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → (log‘𝑦) = (((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)))
280279oveq1d 7171 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log‘𝑦) / (𝑦 − 1)) = ((((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)) / (𝑦 − 1)))
281266, 280ifeq12d 4487 . . . . . . . . . . . . . 14 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1))) = if(𝑦 = 1, ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1), ((((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)) / (𝑦 − 1))))
282281mpteq2ia 5157 . . . . . . . . . . . . 13 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) = (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1), ((((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)) / (𝑦 − 1))))
283256, 206, 282dvcnp 24516 . . . . . . . . . . . 12 (((ℂ ∈ {ℝ, ℂ} ∧ (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ℂ ∧ (1(ball‘(abs ∘ − ))1) ⊆ ℂ) ∧ 1 ∈ dom (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))) → (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘1))
284255, 283mpan2 689 . . . . . . . . . . 11 ((ℂ ∈ {ℝ, ℂ} ∧ (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ℂ ∧ (1(ball‘(abs ∘ − ))1) ⊆ ℂ) → (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘1))
285240, 249, 224, 284mp3an 1457 . . . . . . . . . 10 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘1)
286 oveq2 7164 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝐴 · 𝑥) = (𝐴 · 0))
287286oveq2d 7172 . . . . . . . . . . . . . 14 (𝑥 = 0 → (1 + (𝐴 · 𝑥)) = (1 + (𝐴 · 0)))
288 eqid 2821 . . . . . . . . . . . . . 14 (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) = (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))
289 ovex 7189 . . . . . . . . . . . . . 14 (1 + (𝐴 · 0)) ∈ V
290287, 288, 289fvmpt 6768 . . . . . . . . . . . . 13 (0 ∈ 𝑆 → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0) = (1 + (𝐴 · 0)))
291231, 290syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0) = (1 + (𝐴 · 0)))
292 mul01 10819 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
293292oveq2d 7172 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = (1 + 0))
294293, 59syl6eq 2872 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = 1)
295291, 294eqtrd 2856 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0) = 1)
296295fveq2d 6674 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0)) = ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘1))
297285, 296eleqtrrid 2920 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0)))
298 cnpco 21875 . . . . . . . . 9 (((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))‘0) ∧ (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0))) → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
299239, 297, 298syl2anc 586 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
300204, 299eqeltrrd 2914 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
301208, 208, 211cnmptc 22270 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ 𝐴) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
302208cnmptid 22269 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ 𝑦) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
303208, 301, 302, 215cnmpt12f 22274 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
304 efcn 25031 . . . . . . . . . . 11 exp ∈ (ℂ–cn→ℂ)
305206cncfcn1 23518 . . . . . . . . . . 11 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
306304, 305eleqtri 2911 . . . . . . . . . 10 exp ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
307306a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → exp ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
308208, 303, 307cnmpt11f 22272 . . . . . . . 8 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
309177fmpttd 6879 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))):𝑆⟶ℂ)
310309, 231ffvelrnd 6852 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0) ∈ ℂ)
311 unicntop 23394 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
312311cncnpi 21886 . . . . . . . 8 (((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ ((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0) ∈ ℂ) → (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0)))
313308, 310, 312syl2anc 586 . . . . . . 7 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0)))
314 cnpco 21875 . . . . . . 7 (((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0) ∧ (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0))) → ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
315300, 313, 314syl2anc 586 . . . . . 6 (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
316189, 315eqeltrd 2913 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
317206cnfldtop 23392 . . . . . . 7 (TopOpen‘ℂfld) ∈ Top
318317a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (TopOpen‘ℂfld) ∈ Top)
319206cnfldtopn 23390 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
320319blopn 23110 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (1 / ((abs‘𝐴) + 1)) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ∈ (TopOpen‘ℂfld))
32130, 31, 41, 320mp3an2i 1462 . . . . . . . . 9 (𝐴 ∈ ℂ → (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ∈ (TopOpen‘ℂfld))
32229, 321eqeltrid 2917 . . . . . . . 8 (𝐴 ∈ ℂ → 𝑆 ∈ (TopOpen‘ℂfld))
323 isopn3i 21690 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆)
324317, 322, 323sylancr 589 . . . . . . 7 (𝐴 ∈ ℂ → ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆)
325231, 324eleqtrrd 2916 . . . . . 6 (𝐴 ∈ ℂ → 0 ∈ ((int‘(TopOpen‘ℂfld))‘𝑆))
326 efcl 15436 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
327326ad2antrr 724 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ 𝑥 = 0) → (exp‘𝐴) ∈ ℂ)
32884, 14, 86sylancr 589 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 · 𝑥)) ∈ ℂ)
329328, 49cxpcld 25291 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) ∈ ℂ)
330327, 329ifclda 4501 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) ∈ ℂ)
331330fmpttd 6879 . . . . . 6 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))):ℂ⟶ℂ)
332311, 311cnprest 21897 . . . . . 6 ((((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ) ∧ (0 ∈ ((int‘(TopOpen‘ℂfld))‘𝑆) ∧ (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))):ℂ⟶ℂ)) → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘0) ↔ ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0)))
333318, 44, 325, 331, 332syl22anc 836 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘0) ↔ ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0)))
334316, 333mpbird 259 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘0))
335311cnpresti 21896 . . . 4 (((0[,)+∞) ⊆ ℂ ∧ 0 ∈ (0[,)+∞) ∧ (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘0)) → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) CnP (TopOpen‘ℂfld))‘0))
3363, 26, 334, 335mp3an2i 1462 . . 3 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) CnP (TopOpen‘ℂfld))‘0))
33724, 336eqeltrd 2913 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) CnP (TopOpen‘ℂfld))‘0))
338 simpl 485 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → 𝐴 ∈ ℂ)
339 rpcn 12400 . . . . . . 7 (𝑘 ∈ ℝ+𝑘 ∈ ℂ)
340339adantl 484 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → 𝑘 ∈ ℂ)
341 rpne0 12406 . . . . . . 7 (𝑘 ∈ ℝ+𝑘 ≠ 0)
342341adantl 484 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → 𝑘 ≠ 0)
343338, 340, 342divcld 11416 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → (𝐴 / 𝑘) ∈ ℂ)
344 addcl 10619 . . . . 5 ((1 ∈ ℂ ∧ (𝐴 / 𝑘) ∈ ℂ) → (1 + (𝐴 / 𝑘)) ∈ ℂ)
34584, 343, 344sylancr 589 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → (1 + (𝐴 / 𝑘)) ∈ ℂ)
346345, 340cxpcld 25291 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → ((1 + (𝐴 / 𝑘))↑𝑐𝑘) ∈ ℂ)
347 oveq2 7164 . . . . 5 (𝑘 = (1 / 𝑥) → (𝐴 / 𝑘) = (𝐴 / (1 / 𝑥)))
348347oveq2d 7172 . . . 4 (𝑘 = (1 / 𝑥) → (1 + (𝐴 / 𝑘)) = (1 + (𝐴 / (1 / 𝑥))))
349 id 22 . . . 4 (𝑘 = (1 / 𝑥) → 𝑘 = (1 / 𝑥))
350348, 349oveq12d 7174 . . 3 (𝑘 = (1 / 𝑥) → ((1 + (𝐴 / 𝑘))↑𝑐𝑘) = ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))
351 eqid 2821 . . 3 ((TopOpen‘ℂfld) ↾t (0[,)+∞)) = ((TopOpen‘ℂfld) ↾t (0[,)+∞))
352326, 346, 350, 206, 351rlimcnp3 25545 . 2 (𝐴 ∈ ℂ → ((𝑘 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟 (exp‘𝐴) ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) CnP (TopOpen‘ℂfld))‘0)))
353337, 352mpbird 259 1 (𝐴 ∈ ℂ → (𝑘 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟 (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  cdif 3933  wss 3936  ifcif 4467  {csn 4567  {cpr 4569   cuni 4838   class class class wbr 5066  cmpt 5146  dom cdm 5555  ran crn 5556  cres 5557  ccom 5559  wf 6351  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  +crp 12390  (,]cioc 12740  [,)cico 12741  abscabs 14593  𝑟 crli 14842  expce 15415  t crest 16694  TopOpenctopn 16695  ∞Metcxmet 20530  ballcbl 20532  fldccnfld 20545  Topctop 21501  TopOnctopon 21518  intcnt 21625   Cn ccn 21832   CnP ccnp 21833   ×t ctx 22168  cnccncf 23484   D cdv 24461  logclog 25138  𝑐ccxp 25139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-tan 15425  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140  df-cxp 25141
This theorem is referenced by:  dfef2  25548
  Copyright terms: Public domain W3C validator