Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem4 Structured version   Visualization version   GIF version

Theorem areacirclem4 35000
Description: Endpoint-inclusive continuity of antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Assertion
Ref Expression
areacirclem4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Distinct variable group:   𝑡,𝑅

Proof of Theorem areacirclem4
StepHypRef Expression
1 rpcn 12400 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
21sqcld 13509 . . 3 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
3 rpre 12398 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
43renegcld 11067 . . . . 5 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℝ)
5 iccssre 12819 . . . . 5 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
64, 3, 5syl2anc 586 . . . 4 (𝑅 ∈ ℝ+ → (-𝑅[,]𝑅) ⊆ ℝ)
7 ax-resscn 10594 . . . 4 ℝ ⊆ ℂ
86, 7sstrdi 3979 . . 3 (𝑅 ∈ ℝ+ → (-𝑅[,]𝑅) ⊆ ℂ)
9 ssid 3989 . . . 4 ℂ ⊆ ℂ
109a1i 11 . . 3 (𝑅 ∈ ℝ+ → ℂ ⊆ ℂ)
11 cncfmptc 23519 . . 3 (((𝑅↑2) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (𝑅↑2)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
122, 8, 10, 11syl3anc 1367 . 2 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (𝑅↑2)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
13 eqid 2821 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1413addcn 23473 . . . 4 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1514a1i 11 . . 3 (𝑅 ∈ ℝ+ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
168sselda 3967 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℂ)
171adantr 483 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℂ)
18 rpne0 12406 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 ≠ 0)
1918adantr 483 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑅 ≠ 0)
2016, 17, 19divcld 11416 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) ∈ ℂ)
21 asinval 25460 . . . . . . 7 ((𝑡 / 𝑅) ∈ ℂ → (arcsin‘(𝑡 / 𝑅)) = (-i · (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
2220, 21syl 17 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑡 / 𝑅)) = (-i · (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
23 ax-icn 10596 . . . . . . . . . . . 12 i ∈ ℂ
2423a1i 11 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → i ∈ ℂ)
2524, 20mulcld 10661 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (i · (𝑡 / 𝑅)) ∈ ℂ)
26 1cnd 10636 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℂ)
2720sqcld 13509 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅)↑2) ∈ ℂ)
2826, 27subcld 10997 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑡 / 𝑅)↑2)) ∈ ℂ)
2928sqrtcld 14797 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℂ)
3025, 29addcld 10660 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℂ)
31 0lt1 11162 . . . . . . . . . . . . . . 15 0 < 1
32 simp3 1134 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → 𝑡 = 0)
3332oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (𝑡 / 𝑅) = (0 / 𝑅))
341, 18div0d 11415 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → (0 / 𝑅) = 0)
35343ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 / 𝑅) = 0)
3633, 35eqtrd 2856 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (𝑡 / 𝑅) = 0)
3736oveq2d 7172 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (i · (𝑡 / 𝑅)) = (i · 0))
38 it0e0 11860 . . . . . . . . . . . . . . . . . . . 20 (i · 0) = 0
3937, 38syl6eq 2872 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (i · (𝑡 / 𝑅)) = 0)
4036oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((𝑡 / 𝑅)↑2) = (0↑2))
4140oveq2d 7172 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (1 − ((𝑡 / 𝑅)↑2)) = (1 − (0↑2)))
4241fveq2d 6674 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (√‘(1 − ((𝑡 / 𝑅)↑2))) = (√‘(1 − (0↑2))))
43 sq0 13556 . . . . . . . . . . . . . . . . . . . . . . . 24 (0↑2) = 0
4443oveq2i 7167 . . . . . . . . . . . . . . . . . . . . . . 23 (1 − (0↑2)) = (1 − 0)
45 1m0e1 11759 . . . . . . . . . . . . . . . . . . . . . . 23 (1 − 0) = 1
4644, 45eqtri 2844 . . . . . . . . . . . . . . . . . . . . . 22 (1 − (0↑2)) = 1
4746fveq2i 6673 . . . . . . . . . . . . . . . . . . . . 21 (√‘(1 − (0↑2))) = (√‘1)
48 sqrt1 14631 . . . . . . . . . . . . . . . . . . . . 21 (√‘1) = 1
4947, 48eqtri 2844 . . . . . . . . . . . . . . . . . . . 20 (√‘(1 − (0↑2))) = 1
5042, 49syl6eq 2872 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (√‘(1 − ((𝑡 / 𝑅)↑2))) = 1)
5139, 50oveq12d 7174 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (0 + 1))
52 0p1e1 11760 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
5351, 52syl6eq 2872 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) = 1)
5453breq2d 5078 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ↔ 0 < 1))
55 0red 10644 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → 0 ∈ ℝ)
56 1red 10642 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → 1 ∈ ℝ)
5753, 56eqeltrd 2913 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
5855, 57ltnled 10787 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ↔ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
5954, 58bitr3d 283 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 < 1 ↔ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
6031, 59mpbii 235 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0)
61603expa 1114 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 = 0) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0)
6261olcd 870 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 = 0) → (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
63 inelr 11628 . . . . . . . . . . . . . 14 ¬ i ∈ ℝ
6425, 29pncand 10998 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (i · (𝑡 / 𝑅)))
65643adant3 1128 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (i · (𝑡 / 𝑅)))
6665oveq1d 7171 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)) = ((i · (𝑡 / 𝑅)) · (𝑅 / 𝑡)))
6723a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → i ∈ ℂ)
68203adant3 1128 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (𝑡 / 𝑅) ∈ ℂ)
6913ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑅 ∈ ℂ)
70163adant3 1128 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑡 ∈ ℂ)
71 simp3 1134 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑡 ≠ 0)
7269, 70, 71divcld 11416 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (𝑅 / 𝑡) ∈ ℂ)
7367, 68, 72mulassd 10664 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((i · (𝑡 / 𝑅)) · (𝑅 / 𝑡)) = (i · ((𝑡 / 𝑅) · (𝑅 / 𝑡))))
7466, 73eqtrd 2856 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)) = (i · ((𝑡 / 𝑅) · (𝑅 / 𝑡))))
75183ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑅 ≠ 0)
7670, 69, 71, 75divcan6d 11435 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((𝑡 / 𝑅) · (𝑅 / 𝑡)) = 1)
7776oveq2d 7172 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (i · ((𝑡 / 𝑅) · (𝑅 / 𝑡))) = (i · 1))
7867mulid1d 10658 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (i · 1) = i)
7974, 77, 783eqtrrd 2861 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → i = ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)))
8079adantr 483 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → i = ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)))
81 simpr 487 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
82 1red 10642 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℝ)
836sselda 3967 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
843adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℝ)
8583, 84, 19redivcld 11468 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) ∈ ℝ)
8685resqcld 13612 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅)↑2) ∈ ℝ)
8782, 86resubcld 11068 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑡 / 𝑅)↑2)) ∈ ℝ)
88 elicc2 12802 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
894, 3, 88syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
90 1red 10642 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 1 ∈ ℝ)
91 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
923adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
9318adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ≠ 0)
9491, 92, 93redivcld 11468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡 / 𝑅) ∈ ℝ)
9594resqcld 13612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡 / 𝑅)↑2) ∈ ℝ)
9690, 95subge0d 11230 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (0 ≤ (1 − ((𝑡 / 𝑅)↑2)) ↔ ((𝑡 / 𝑅)↑2) ≤ 1))
97 recn 10627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
9897adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
991adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℂ)
10098, 99, 93sqdivd 13524 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡 / 𝑅)↑2) = ((𝑡↑2) / (𝑅↑2)))
101100breq1d 5076 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡 / 𝑅)↑2) ≤ 1 ↔ ((𝑡↑2) / (𝑅↑2)) ≤ 1))
102 resqcl 13491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
103102adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
1043resqcld 13612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ)
105 rpgt0 12402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑅 ∈ ℝ+ → 0 < 𝑅)
106 0red 10644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → 0 ∈ ℝ)
107 0le0 11739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 0 ≤ 0
108107a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → 0 ≤ 0)
109 rpge0 12403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
110106, 3, 108, 109lt2sqd 13620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑅 ∈ ℝ+ → (0 < 𝑅 ↔ (0↑2) < (𝑅↑2)))
11143a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → (0↑2) = 0)
112111breq1d 5076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑅 ∈ ℝ+ → ((0↑2) < (𝑅↑2) ↔ 0 < (𝑅↑2)))
113110, 112bitrd 281 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑅 ∈ ℝ+ → (0 < 𝑅 ↔ 0 < (𝑅↑2)))
114105, 113mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ ℝ+ → 0 < (𝑅↑2))
115104, 114elrpd 12429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ+)
116115adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ+)
117103, 90, 116ledivmuld 12485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡↑2) / (𝑅↑2)) ≤ 1 ↔ (𝑡↑2) ≤ ((𝑅↑2) · 1)))
118 absresq 14662 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℝ → ((abs‘𝑡)↑2) = (𝑡↑2))
119118eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 ∈ ℝ → (𝑡↑2) = ((abs‘𝑡)↑2))
1202mulid1d 10658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ ℝ+ → ((𝑅↑2) · 1) = (𝑅↑2))
121119, 120breqan12rd 5083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) ≤ ((𝑅↑2) · 1) ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
12297abscld 14796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℝ → (abs‘𝑡) ∈ ℝ)
123122adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
12497absge0d 14804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℝ → 0 ≤ (abs‘𝑡))
125124adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
126109adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ 𝑅)
127123, 92, 125, 126le2sqd 13621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
12891, 92absled 14790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅𝑡𝑡𝑅)))
129121, 127, 1283bitr2d 309 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) ≤ ((𝑅↑2) · 1) ↔ (-𝑅𝑡𝑡𝑅)))
130117, 129bitrd 281 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡↑2) / (𝑅↑2)) ≤ 1 ↔ (-𝑅𝑡𝑡𝑅)))
13196, 101, 1303bitrrd 308 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) ↔ 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
132131biimpd 231 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
133132exp4b 433 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 ∈ ℝ+ → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))))
1341333impd 1344 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℝ+ → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
13589, 134sylbid 242 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
136135imp 409 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2)))
13787, 136resqrtcld 14777 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℝ)
1381373adant3 1128 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℝ)
139138adantr 483 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℝ)
14081, 139resubcld 11068 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
14133ad2ant1 1129 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑅 ∈ ℝ)
142833adant3 1128 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑡 ∈ ℝ)
143141, 142, 71redivcld 11468 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (𝑅 / 𝑡) ∈ ℝ)
144143adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → (𝑅 / 𝑡) ∈ ℝ)
145140, 144remulcld 10671 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)) ∈ ℝ)
14680, 145eqeltrd 2913 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → i ∈ ℝ)
147146ex 415 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ → i ∈ ℝ))
1481473expa 1114 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 ≠ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ → i ∈ ℝ))
14963, 148mtoi 201 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 ≠ 0) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
150149orcd 869 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 ≠ 0) → (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
15162, 150pm2.61dane 3104 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
152 ianor 978 . . . . . . . . . . 11 (¬ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0) ↔ (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
153151, 152sylibr 236 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ¬ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
154 mnfxr 10698 . . . . . . . . . . . 12 -∞ ∈ ℝ*
155 0re 10643 . . . . . . . . . . . 12 0 ∈ ℝ
156 elioc2 12800 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0) ↔ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ -∞ < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0)))
157154, 155, 156mp2an 690 . . . . . . . . . . 11 (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0) ↔ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ -∞ < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
158 3simpb 1145 . . . . . . . . . . 11 ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ -∞ < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
159157, 158sylbi 219 . . . . . . . . . 10 (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
160153, 159nsyl 142 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0))
16130, 160eldifd 3947 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (ℂ ∖ (-∞(,]0)))
162 fvres 6689 . . . . . . . 8 (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))
163161, 162syl 17 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))
164163oveq2d 7172 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))) = (-i · (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
16522, 164eqtr4d 2859 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑡 / 𝑅)) = (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
166165mpteq2dva 5161 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (arcsin‘(𝑡 / 𝑅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))))
167 negicn 10887 . . . . . . 7 -i ∈ ℂ
168167a1i 11 . . . . . 6 (𝑅 ∈ ℝ+ → -i ∈ ℂ)
169 cncfmptc 23519 . . . . . 6 ((-i ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ -i) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
170168, 8, 10, 169syl3anc 1367 . . . . 5 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ -i) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
17113cnfldtopon 23391 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
172171a1i 11 . . . . . . . 8 (𝑅 ∈ ℝ+ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
173 resttopon 21769 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (-𝑅[,]𝑅) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
174172, 8, 173syl2anc 586 . . . . . . 7 (𝑅 ∈ ℝ+ → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
175161fmpttd 6879 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))):(-𝑅[,]𝑅)⟶(ℂ ∖ (-∞(,]0)))
176 difssd 4109 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (ℂ ∖ (-∞(,]0)) ⊆ ℂ)
17716, 17, 19divrec2d 11420 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) = ((1 / 𝑅) · 𝑡))
178177oveq2d 7172 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (i · (𝑡 / 𝑅)) = (i · ((1 / 𝑅) · 𝑡)))
1791, 18reccld 11409 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (1 / 𝑅) ∈ ℂ)
180179adantr 483 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (1 / 𝑅) ∈ ℂ)
18124, 180, 16mulassd 10664 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((i · (1 / 𝑅)) · 𝑡) = (i · ((1 / 𝑅) · 𝑡)))
182178, 181eqtr4d 2859 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (i · (𝑡 / 𝑅)) = ((i · (1 / 𝑅)) · 𝑡))
183182mpteq2dva 5161 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (𝑡 / 𝑅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (1 / 𝑅)) · 𝑡)))
18423a1i 11 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → i ∈ ℂ)
185184, 179mulcld 10661 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (i · (1 / 𝑅)) ∈ ℂ)
186 cncfmptc 23519 . . . . . . . . . . . . . 14 (((i · (1 / 𝑅)) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
187185, 8, 10, 186syl3anc 1367 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
188 cncfmptid 23520 . . . . . . . . . . . . . 14 (((-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ 𝑡) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
1898, 10, 188syl2anc 586 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ 𝑡) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
190187, 189mulcncf 24047 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (1 / 𝑅)) · 𝑡)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
191183, 190eqeltrd 2913 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (𝑡 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
19217, 29mulcld 10661 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℂ)
193192, 17, 19divrec2d 11420 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) / 𝑅) = ((1 / 𝑅) · (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2))))))
19429, 17, 19divcan3d 11421 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) / 𝑅) = (√‘(1 − ((𝑡 / 𝑅)↑2))))
195104adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ)
1963sqge0d 13613 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 0 ≤ (𝑅↑2))
197196adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (𝑅↑2))
198195, 197, 87, 136sqrtmuld 14784 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2)))) = ((√‘(𝑅↑2)) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))
1992adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℂ)
200199, 26, 27subdid 11096 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2))) = (((𝑅↑2) · 1) − ((𝑅↑2) · ((𝑡 / 𝑅)↑2))))
201199mulid1d 10658 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · 1) = (𝑅↑2))
20216, 17, 19sqdivd 13524 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅)↑2) = ((𝑡↑2) / (𝑅↑2)))
203202oveq2d 7172 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((𝑡 / 𝑅)↑2)) = ((𝑅↑2) · ((𝑡↑2) / (𝑅↑2))))
20416sqcld 13509 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℂ)
205 sqne0 13490 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℂ → ((𝑅↑2) ≠ 0 ↔ 𝑅 ≠ 0))
2061, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → ((𝑅↑2) ≠ 0 ↔ 𝑅 ≠ 0))
20718, 206mpbird 259 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℝ+ → (𝑅↑2) ≠ 0)
208207adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ≠ 0)
209204, 199, 208divcan2d 11418 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((𝑡↑2) / (𝑅↑2))) = (𝑡↑2))
210203, 209eqtrd 2856 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((𝑡 / 𝑅)↑2)) = (𝑡↑2))
211201, 210oveq12d 7174 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((𝑅↑2) · 1) − ((𝑅↑2) · ((𝑡 / 𝑅)↑2))) = ((𝑅↑2) − (𝑡↑2)))
212200, 211eqtrd 2856 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2))) = ((𝑅↑2) − (𝑡↑2)))
213212fveq2d 6674 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2)))) = (√‘((𝑅↑2) − (𝑡↑2))))
214109adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ 𝑅)
21584, 214sqrtsqd 14779 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(𝑅↑2)) = 𝑅)
216215oveq1d 7171 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((√‘(𝑅↑2)) · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))))
217198, 213, 2163eqtr3rd 2865 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (√‘((𝑅↑2) − (𝑡↑2))))
218217oveq2d 7172 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((1 / 𝑅) · (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2))))) = ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2)))))
219193, 194, 2183eqtr3d 2864 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑡 / 𝑅)↑2))) = ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2)))))
220219mpteq2dva 5161 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))))
221 cncfmptc 23519 . . . . . . . . . . . . . 14 (((1 / 𝑅) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (1 / 𝑅)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
222179, 8, 10, 221syl3anc 1367 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (1 / 𝑅)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
223 areacirclem2 34998 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
2243, 109, 223syl2anc 586 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
225222, 224mulcncf 24047 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
226220, 225eqeltrd 2913 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
22713, 15, 191, 226cncfmpt2f 23522 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
228 cncffvrn 23506 . . . . . . . . . 10 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))):(-𝑅[,]𝑅)⟶(ℂ ∖ (-∞(,]0))))
229176, 227, 228syl2anc 586 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))):(-𝑅[,]𝑅)⟶(ℂ ∖ (-∞(,]0))))
230175, 229mpbird 259 . . . . . . . 8 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))))
231 eqid 2821 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) = ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅))
232 eqid 2821 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))
23313, 231, 232cncfcn 23517 . . . . . . . . 9 (((-𝑅[,]𝑅) ⊆ ℂ ∧ (ℂ ∖ (-∞(,]0)) ⊆ ℂ) → ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))))
2348, 176, 233syl2anc 586 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))))
235230, 234eleqtrd 2915 . . . . . . 7 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))))
236 eqid 2821 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
237236logcn 25230 . . . . . . . . 9 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)
238 difss 4108 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
239 eqid 2821 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t ℂ) = ((TopOpen‘ℂfld) ↾t ℂ)
24013, 232, 239cncfcn 23517 . . . . . . . . . 10 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
241238, 9, 240mp2an 690 . . . . . . . . 9 ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ))
242237, 241eleqtri 2911 . . . . . . . 8 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ))
243242a1i 11 . . . . . . 7 (𝑅 ∈ ℝ+ → (log ↾ (ℂ ∖ (-∞(,]0))) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
244174, 235, 243cnmpt11f 22272 . . . . . 6 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
24513, 231, 239cncfcn 23517 . . . . . . 7 (((-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
2468, 10, 245syl2anc 586 . . . . . 6 (𝑅 ∈ ℝ+ → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
247244, 246eleqtrrd 2916 . . . . 5 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
248170, 247mulcncf 24047 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
249166, 248eqeltrd 2913 . . 3 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (arcsin‘(𝑡 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
250219oveq2d 7172 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = ((𝑡 / 𝑅) · ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))))
251199, 204subcld 10997 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
252251sqrtcld 14797 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
25320, 180, 252mulassd 10664 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((𝑡 / 𝑅) · (1 / 𝑅)) · (√‘((𝑅↑2) − (𝑡↑2)))) = ((𝑡 / 𝑅) · ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))))
25416, 17, 19divrecd 11419 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) = (𝑡 · (1 / 𝑅)))
255254oveq1d 7171 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (1 / 𝑅)) = ((𝑡 · (1 / 𝑅)) · (1 / 𝑅)))
25616, 180, 180mulassd 10664 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 · (1 / 𝑅)) · (1 / 𝑅)) = (𝑡 · ((1 / 𝑅) · (1 / 𝑅))))
257255, 256eqtrd 2856 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (1 / 𝑅)) = (𝑡 · ((1 / 𝑅) · (1 / 𝑅))))
258257oveq1d 7171 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((𝑡 / 𝑅) · (1 / 𝑅)) · (√‘((𝑅↑2) − (𝑡↑2)))) = ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2)))))
259250, 253, 2583eqtr2d 2862 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2)))))
260259mpteq2dva 5161 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2))))))
261179, 179mulcld 10661 . . . . . . 7 (𝑅 ∈ ℝ+ → ((1 / 𝑅) · (1 / 𝑅)) ∈ ℂ)
262 cncfmptc 23519 . . . . . . 7 ((((1 / 𝑅) · (1 / 𝑅)) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
263261, 8, 10, 262syl3anc 1367 . . . . . 6 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
264189, 263mulcncf 24047 . . . . 5 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (𝑡 · ((1 / 𝑅) · (1 / 𝑅)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
265264, 224mulcncf 24047 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
266260, 265eqeltrd 2913 . . 3 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
26713, 15, 249, 266cncfmpt2f 23522 . 2 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
26812, 267mulcncf 24047 1 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  cdif 3933  wss 3936   class class class wbr 5066  cmpt 5146  cres 5557  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538  ici 10539   + caddc 10540   · cmul 10542  -∞cmnf 10673  *cxr 10674   < clt 10675  cle 10676  cmin 10870  -cneg 10871   / cdiv 11297  2c2 11693  +crp 12390  (,]cioc 12740  [,]cicc 12742  cexp 13430  csqrt 14592  abscabs 14593  t crest 16694  TopOpenctopn 16695  fldccnfld 20545  TopOnctopon 21518   Cn ccn 21832   ×t ctx 22168  cnccncf 23484  logclog 25138  arcsincasin 25440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-tan 15425  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140  df-cxp 25141  df-asin 25443
This theorem is referenced by:  areacirc  35002
  Copyright terms: Public domain W3C validator