Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvordtrestixx Structured version   Visualization version   GIF version

Theorem cnvordtrestixx 31156
Description: The restriction of the 'greater than' order to an interval gives the same topology as the subspace topology. (Contributed by Thierry Arnoux, 1-Apr-2017.)
Hypotheses
Ref Expression
cnvordtrestixx.1 𝐴 ⊆ ℝ*
cnvordtrestixx.2 ((𝑥𝐴𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
Assertion
Ref Expression
cnvordtrestixx ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem cnvordtrestixx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lern 17835 . . . . 5 * = ran ≤
2 df-rn 5566 . . . . 5 ran ≤ = dom
31, 2eqtri 2844 . . . 4 * = dom
4 letsr 17837 . . . . . 6 ≤ ∈ TosetRel
5 cnvtsr 17832 . . . . . 6 ( ≤ ∈ TosetRel → ≤ ∈ TosetRel )
64, 5ax-mp 5 . . . . 5 ≤ ∈ TosetRel
76a1i 11 . . . 4 (⊤ → ≤ ∈ TosetRel )
8 cnvordtrestixx.1 . . . . 5 𝐴 ⊆ ℝ*
98a1i 11 . . . 4 (⊤ → 𝐴 ⊆ ℝ*)
10 brcnvg 5750 . . . . . . . . . 10 ((𝑦𝐴𝑧 ∈ ℝ*) → (𝑦𝑧𝑧𝑦))
1110adantlr 713 . . . . . . . . 9 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → (𝑦𝑧𝑧𝑦))
12 simpr 487 . . . . . . . . . 10 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → 𝑧 ∈ ℝ*)
13 simplr 767 . . . . . . . . . 10 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → 𝑥𝐴)
14 brcnvg 5750 . . . . . . . . . 10 ((𝑧 ∈ ℝ*𝑥𝐴) → (𝑧𝑥𝑥𝑧))
1512, 13, 14syl2anc 586 . . . . . . . . 9 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → (𝑧𝑥𝑥𝑧))
1611, 15anbi12d 632 . . . . . . . 8 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → ((𝑦𝑧𝑧𝑥) ↔ (𝑧𝑦𝑥𝑧)))
17 ancom 463 . . . . . . . 8 ((𝑧𝑦𝑥𝑧) ↔ (𝑥𝑧𝑧𝑦))
1816, 17syl6bb 289 . . . . . . 7 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → ((𝑦𝑧𝑧𝑥) ↔ (𝑥𝑧𝑧𝑦)))
1918rabbidva 3478 . . . . . 6 ((𝑦𝐴𝑥𝐴) → {𝑧 ∈ ℝ* ∣ (𝑦𝑧𝑧𝑥)} = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
20 simpr 487 . . . . . . . . 9 ((𝑦𝐴𝑥𝐴) → 𝑥𝐴)
218, 20sseldi 3965 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → 𝑥 ∈ ℝ*)
22 simpl 485 . . . . . . . . 9 ((𝑦𝐴𝑥𝐴) → 𝑦𝐴)
238, 22sseldi 3965 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → 𝑦 ∈ ℝ*)
24 iccval 12778 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
2521, 23, 24syl2anc 586 . . . . . . 7 ((𝑦𝐴𝑥𝐴) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
26 cnvordtrestixx.2 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
2726ancoms 461 . . . . . . 7 ((𝑦𝐴𝑥𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
2825, 27eqsstrrd 4006 . . . . . 6 ((𝑦𝐴𝑥𝐴) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ⊆ 𝐴)
2919, 28eqsstrd 4005 . . . . 5 ((𝑦𝐴𝑥𝐴) → {𝑧 ∈ ℝ* ∣ (𝑦𝑧𝑧𝑥)} ⊆ 𝐴)
3029adantl 484 . . . 4 ((⊤ ∧ (𝑦𝐴𝑥𝐴)) → {𝑧 ∈ ℝ* ∣ (𝑦𝑧𝑧𝑥)} ⊆ 𝐴)
313, 7, 9, 30ordtrest2 21812 . . 3 (⊤ → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘ ≤ ) ↾t 𝐴))
3231mptru 1544 . 2 (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘ ≤ ) ↾t 𝐴)
33 tsrps 17831 . . . . 5 ( ≤ ∈ TosetRel → ≤ ∈ PosetRel)
344, 33ax-mp 5 . . . 4 ≤ ∈ PosetRel
35 ordtcnv 21809 . . . 4 ( ≤ ∈ PosetRel → (ordTop‘ ≤ ) = (ordTop‘ ≤ ))
3634, 35ax-mp 5 . . 3 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
3736oveq1i 7166 . 2 ((ordTop‘ ≤ ) ↾t 𝐴) = ((ordTop‘ ≤ ) ↾t 𝐴)
3832, 37eqtr2i 2845 1 ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wtru 1538  wcel 2114  {crab 3142  cin 3935  wss 3936   class class class wbr 5066   × cxp 5553  ccnv 5554  dom cdm 5555  ran crn 5556  cfv 6355  (class class class)co 7156  *cxr 10674  cle 10676  [,]cicc 12742  t crest 16694  ordTopcordt 16772  PosetRelcps 17808   TosetRel ctsr 17809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-pre-lttri 10611  ax-pre-lttrn 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-icc 12746  df-rest 16696  df-topgen 16717  df-ordt 16774  df-ps 17810  df-tsr 17811  df-top 21502  df-topon 21519  df-bases 21554
This theorem is referenced by:  xrge0iifhmeo  31179
  Copyright terms: Public domain W3C validator