MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  creur Structured version   Visualization version   GIF version

Theorem creur 10856
Description: The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
creur (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem creur
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 9887 . 2 (𝐴 ∈ ℂ → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤)))
2 cru 10854 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
32ancoms 467 . . . . . . . . . 10 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
4 eqcom 2611 . . . . . . . . . 10 ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)))
5 ancom 464 . . . . . . . . . 10 ((𝑦 = 𝑤𝑥 = 𝑧) ↔ (𝑥 = 𝑧𝑦 = 𝑤))
63, 4, 53bitr4g 301 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑦 = 𝑤𝑥 = 𝑧)))
76anassrs 677 . . . . . . . 8 ((((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑦 = 𝑤𝑥 = 𝑧)))
87rexbidva 3025 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ ∃𝑦 ∈ ℝ (𝑦 = 𝑤𝑥 = 𝑧)))
9 biidd 250 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑥 = 𝑧𝑥 = 𝑧))
109ceqsrexv 3300 . . . . . . . 8 (𝑤 ∈ ℝ → (∃𝑦 ∈ ℝ (𝑦 = 𝑤𝑥 = 𝑧) ↔ 𝑥 = 𝑧))
1110ad2antlr 758 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ (𝑦 = 𝑤𝑥 = 𝑧) ↔ 𝑥 = 𝑧))
128, 11bitrd 266 . . . . . 6 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑥 = 𝑧))
1312ralrimiva 2943 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∀𝑥 ∈ ℝ (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑥 = 𝑧))
14 reu6i 3358 . . . . 5 ((𝑧 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑥 = 𝑧)) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
1513, 14syldan 485 . . . 4 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
16 eqeq1 2608 . . . . . 6 (𝐴 = (𝑧 + (i · 𝑤)) → (𝐴 = (𝑥 + (i · 𝑦)) ↔ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))))
1716rexbidv 3028 . . . . 5 (𝐴 = (𝑧 + (i · 𝑤)) → (∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))))
1817reubidv 3097 . . . 4 (𝐴 = (𝑧 + (i · 𝑤)) → (∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))))
1915, 18syl5ibrcom 235 . . 3 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))))
2019rexlimivv 3012 . 2 (∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
211, 20syl 17 1 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  wral 2890  wrex 2891  ∃!wreu 2892  (class class class)co 6522  cc 9785  cr 9786  ici 9789   + caddc 9790   · cmul 9792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-op 4126  df-uni 4362  df-br 4573  df-opab 4633  df-mpt 4634  df-id 4938  df-po 4944  df-so 4945  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-er 7601  df-en 7814  df-dom 7815  df-sdom 7816  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-div 10529
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator