Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cusgredgex Structured version   Visualization version   GIF version

Theorem cusgredgex 32368
Description: Any two (distinct) vertices in a complete simple graph are connected to each other by an edge. (Contributed by BTernaryTau, 3-Oct-2023.)
Hypotheses
Ref Expression
cusgredgex.1 𝑉 = (Vtx‘𝐺)
cusgredgex.2 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgredgex (𝐺 ∈ ComplUSGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → {𝐴, 𝐵} ∈ 𝐸))

Proof of Theorem cusgredgex
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 cusgrcplgr 27202 . . . . . . . 8 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)
2 cusgredgex.1 . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
3 cusgredgex.2 . . . . . . . . 9 𝐸 = (Edg‘𝐺)
42, 3cplgredgex 32367 . . . . . . . 8 (𝐺 ∈ ComplGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
51, 4syl 17 . . . . . . 7 (𝐺 ∈ ComplUSGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
65imp 409 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)
7 df-rex 3144 . . . . . 6 (∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒 ↔ ∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒))
86, 7sylib 220 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒))
9 eldifsni 4722 . . . . . . . . . . . . . . . 16 (𝐵 ∈ (𝑉 ∖ {𝐴}) → 𝐵𝐴)
109necomd 3071 . . . . . . . . . . . . . . 15 (𝐵 ∈ (𝑉 ∖ {𝐴}) → 𝐴𝐵)
1110adantl 484 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → 𝐴𝐵)
12 hashprg 13757 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
1311, 12mpbid 234 . . . . . . . . . . . . 13 ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → (♯‘{𝐴, 𝐵}) = 2)
1413adantl 484 . . . . . . . . . . . 12 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (♯‘{𝐴, 𝐵}) = 2)
15 cusgrusgr 27201 . . . . . . . . . . . . . 14 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
163usgredgppr 26978 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ 𝑒𝐸) → (♯‘𝑒) = 2)
1715, 16sylan 582 . . . . . . . . . . . . 13 ((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) → (♯‘𝑒) = 2)
1817adantr 483 . . . . . . . . . . . 12 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (♯‘𝑒) = 2)
1914, 18eqtr4d 2859 . . . . . . . . . . 11 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (♯‘{𝐴, 𝐵}) = (♯‘𝑒))
20 simpl 485 . . . . . . . . . . 11 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸))
21 vex 3497 . . . . . . . . . . . . . . . 16 𝑒 ∈ V
22 2nn0 11915 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
23 hashvnfin 13722 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ V ∧ 2 ∈ ℕ0) → ((♯‘𝑒) = 2 → 𝑒 ∈ Fin))
2421, 22, 23mp2an 690 . . . . . . . . . . . . . . 15 ((♯‘𝑒) = 2 → 𝑒 ∈ Fin)
2517, 24syl 17 . . . . . . . . . . . . . 14 ((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) → 𝑒 ∈ Fin)
26 fisshasheq 32352 . . . . . . . . . . . . . 14 ((𝑒 ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝑒 ∧ (♯‘{𝐴, 𝐵}) = (♯‘𝑒)) → {𝐴, 𝐵} = 𝑒)
2725, 26syl3an1 1159 . . . . . . . . . . . . 13 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ {𝐴, 𝐵} ⊆ 𝑒 ∧ (♯‘{𝐴, 𝐵}) = (♯‘𝑒)) → {𝐴, 𝐵} = 𝑒)
28273comr 1121 . . . . . . . . . . . 12 (((♯‘{𝐴, 𝐵}) = (♯‘𝑒) ∧ (𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ {𝐴, 𝐵} ⊆ 𝑒) → {𝐴, 𝐵} = 𝑒)
29283exp 1115 . . . . . . . . . . 11 ((♯‘{𝐴, 𝐵}) = (♯‘𝑒) → ((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒)))
3019, 20, 29sylc 65 . . . . . . . . . 10 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒))
31303impa 1106 . . . . . . . . 9 ((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸 ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒))
32313com23 1122 . . . . . . . 8 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) ∧ 𝑒𝐸) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒))
33323expia 1117 . . . . . . 7 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (𝑒𝐸 → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒)))
3433imdistand 573 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ((𝑒𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒) → (𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒)))
3534eximdv 1918 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒)))
368, 35mpd 15 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒))
37 pm3.22 462 . . . . . 6 ((𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒) → ({𝐴, 𝐵} = 𝑒𝑒𝐸))
38 eqcom 2828 . . . . . . 7 ({𝐴, 𝐵} = 𝑒𝑒 = {𝐴, 𝐵})
3938anbi1i 625 . . . . . 6 (({𝐴, 𝐵} = 𝑒𝑒𝐸) ↔ (𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸))
4037, 39sylib 220 . . . . 5 ((𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒) → (𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸))
4140eximi 1835 . . . 4 (∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒) → ∃𝑒(𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸))
4236, 41syl 17 . . 3 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒(𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸))
43 prex 5333 . . . 4 {𝐴, 𝐵} ∈ V
44 eleq1 2900 . . . 4 (𝑒 = {𝐴, 𝐵} → (𝑒𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸))
4543, 44ceqsexv 3541 . . 3 (∃𝑒(𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸) ↔ {𝐴, 𝐵} ∈ 𝐸)
4642, 45sylib 220 . 2 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → {𝐴, 𝐵} ∈ 𝐸)
4746ex 415 1 (𝐺 ∈ ComplUSGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → {𝐴, 𝐵} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3016  wrex 3139  Vcvv 3494  cdif 3933  wss 3936  {csn 4567  {cpr 4569  cfv 6355  Fincfn 8509  2c2 11693  0cn0 11898  chash 13691  Vtxcvtx 26781  Edgcedg 26832  USGraphcusgr 26934  ComplGraphccplgr 27191  ComplUSGraphccusgr 27192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692  df-edg 26833  df-usgr 26936  df-nbgr 27115  df-uvtx 27168  df-cplgr 27193  df-cusgr 27194
This theorem is referenced by:  cusgredgex2  32369
  Copyright terms: Public domain W3C validator