MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrfilem1 Structured version   Visualization version   GIF version

Theorem cusgrfilem1 26332
Description: Lemma 1 for cusgrfi 26335. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.)
Hypotheses
Ref Expression
cusgrfi.v 𝑉 = (Vtx‘𝐺)
cusgrfi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})}
Assertion
Ref Expression
cusgrfilem1 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑃 ⊆ (Edg‘𝐺))
Distinct variable groups:   𝑥,𝐺   𝑁,𝑎,𝑥   𝑉,𝑎,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑎)   𝐺(𝑎)

Proof of Theorem cusgrfilem1
StepHypRef Expression
1 cusgrfi.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2620 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2cusgredg 26301 . . 3 (𝐺 ∈ ComplUSGraph → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})
4 fveq2 6178 . . . . . . . . 9 (𝑥 = {𝑎, 𝑁} → (#‘𝑥) = (#‘{𝑎, 𝑁}))
54ad2antlr 762 . . . . . . . 8 (((𝑎𝑁𝑥 = {𝑎, 𝑁}) ∧ (𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉))) → (#‘𝑥) = (#‘{𝑎, 𝑁}))
6 hashprg 13165 . . . . . . . . . . . 12 ((𝑎𝑉𝑁𝑉) → (𝑎𝑁 ↔ (#‘{𝑎, 𝑁}) = 2))
76adantrr 752 . . . . . . . . . . 11 ((𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉)) → (𝑎𝑁 ↔ (#‘{𝑎, 𝑁}) = 2))
87biimpcd 239 . . . . . . . . . 10 (𝑎𝑁 → ((𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉)) → (#‘{𝑎, 𝑁}) = 2))
98adantr 481 . . . . . . . . 9 ((𝑎𝑁𝑥 = {𝑎, 𝑁}) → ((𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉)) → (#‘{𝑎, 𝑁}) = 2))
109imp 445 . . . . . . . 8 (((𝑎𝑁𝑥 = {𝑎, 𝑁}) ∧ (𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉))) → (#‘{𝑎, 𝑁}) = 2)
115, 10eqtrd 2654 . . . . . . 7 (((𝑎𝑁𝑥 = {𝑎, 𝑁}) ∧ (𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉))) → (#‘𝑥) = 2)
1211an13s 844 . . . . . 6 (((𝑁𝑉𝑥 ∈ 𝒫 𝑉) ∧ (𝑎𝑉 ∧ (𝑎𝑁𝑥 = {𝑎, 𝑁}))) → (#‘𝑥) = 2)
1312rexlimdvaa 3028 . . . . 5 ((𝑁𝑉𝑥 ∈ 𝒫 𝑉) → (∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁}) → (#‘𝑥) = 2))
1413ss2rabdv 3675 . . . 4 (𝑁𝑉 → {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})
15 cusgrfi.p . . . . . 6 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})}
1615a1i 11 . . . . 5 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} → 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})})
17 id 22 . . . . 5 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})
1816, 17sseq12d 3626 . . . 4 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} → (𝑃 ⊆ (Edg‘𝐺) ↔ {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2}))
1914, 18syl5ibr 236 . . 3 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} → (𝑁𝑉𝑃 ⊆ (Edg‘𝐺)))
203, 19syl 17 . 2 (𝐺 ∈ ComplUSGraph → (𝑁𝑉𝑃 ⊆ (Edg‘𝐺)))
2120imp 445 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑃 ⊆ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wne 2791  wrex 2910  {crab 2913  wss 3567  𝒫 cpw 4149  {cpr 4170  cfv 5876  2c2 11055  #chash 13100  Vtxcvtx 25855  Edgcedg 25920  ComplUSGraphccusgr 26208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-n0 11278  df-xnn0 11349  df-z 11363  df-uz 11673  df-fz 12312  df-hash 13101  df-edg 25921  df-upgr 25958  df-umgr 25959  df-usgr 26027  df-nbgr 26209  df-uvtxa 26211  df-cplgr 26212  df-cusgr 26213
This theorem is referenced by:  cusgrfi  26335
  Copyright terms: Public domain W3C validator