Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem2N Structured version   Visualization version   GIF version

Theorem dihmeetlem2N 35389
Description: Isomorphism H of a conjunction. (Contributed by NM, 22-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem2.b 𝐵 = (Base‘𝐾)
dihmeetlem2.m = (meet‘𝐾)
dihmeetlem2.h 𝐻 = (LHyp‘𝐾)
dihmeetlem2.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihmeetlem2.l = (le‘𝐾)
dihmeetlem2.j = (join‘𝐾)
dihmeetlem2.a 𝐴 = (Atoms‘𝐾)
dihmeetlem2.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihmeetlem2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihmeetlem2.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihmeetlem2.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihmeetlem2.g 𝐺 = (𝑇 (𝑃) = 𝑞)
dihmeetlem2.o 0 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dihmeetlem2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))

Proof of Theorem dihmeetlem2N
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2609 . . . . . 6 (glb‘𝐾) = (glb‘𝐾)
2 dihmeetlem2.m . . . . . 6 = (meet‘𝐾)
3 simp1l 1077 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ HL)
4 simp2l 1079 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋𝐵)
5 simp3l 1081 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌𝐵)
61, 2, 3, 4, 5meetval 16790 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌}))
76fveq2d 6091 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌})))
8 simp1 1053 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 dihmeetlem2.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
10 dihmeetlem2.l . . . . . . . . 9 = (le‘𝐾)
11 dihmeetlem2.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
12 eqid 2609 . . . . . . . . 9 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
139, 10, 11, 12dibeldmN 35248 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ↔ (𝑋𝐵𝑋 𝑊)))
1413biimpar 500 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊))
15143adant3 1073 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊))
169, 10, 11, 12dibeldmN 35248 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊) ↔ (𝑌𝐵𝑌 𝑊)))
1716biimpar 500 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊))
18173adant2 1072 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊))
19 prssg 4289 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → ((𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ∧ 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊)) ↔ {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊)))
204, 5, 19syl2anc 690 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ∧ 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊)) ↔ {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊)))
2115, 18, 20mpbi2and 957 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊))
22 prnzg 4253 . . . . . 6 (𝑋𝐵 → {𝑋, 𝑌} ≠ ∅)
234, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → {𝑋, 𝑌} ≠ ∅)
241, 11, 12dibglbN 35256 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ({𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊) ∧ {𝑋, 𝑌} ≠ ∅)) → (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
258, 21, 23, 24syl12anc 1315 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
267, 25eqtrd 2643 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
27 hllat 33451 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
283, 27syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ Lat)
299, 2latmcl 16823 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
3028, 4, 5, 29syl3anc 1317 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) ∈ 𝐵)
31 simp1r 1078 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑊𝐻)
329, 11lhpbase 34085 . . . . . 6 (𝑊𝐻𝑊𝐵)
3331, 32syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑊𝐵)
349, 10, 2latmle1 16847 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
3528, 4, 5, 34syl3anc 1317 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑋)
36 simp2r 1080 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋 𝑊)
379, 10, 28, 30, 4, 33, 35, 36lattrd 16829 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑊)
38 dihmeetlem2.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
399, 10, 11, 38, 12dihvalb 35327 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑌) 𝑊)) → (𝐼‘(𝑋 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)))
408, 30, 37, 39syl12anc 1315 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)))
41 simpl1 1056 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝐾 ∈ HL ∧ 𝑊𝐻))
42 vex 3175 . . . . . . 7 𝑥 ∈ V
4342elpr 4145 . . . . . 6 (𝑥 ∈ {𝑋, 𝑌} ↔ (𝑥 = 𝑋𝑥 = 𝑌))
44 simpl2 1057 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑋) → (𝑋𝐵𝑋 𝑊))
45 eleq1 2675 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐵𝑋𝐵))
46 breq1 4580 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
4745, 46anbi12d 742 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑥𝐵𝑥 𝑊) ↔ (𝑋𝐵𝑋 𝑊)))
4847adantl 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑋) → ((𝑥𝐵𝑥 𝑊) ↔ (𝑋𝐵𝑋 𝑊)))
4944, 48mpbird 245 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑋) → (𝑥𝐵𝑥 𝑊))
50 simpl3 1058 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑌) → (𝑌𝐵𝑌 𝑊))
51 eleq1 2675 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝑥𝐵𝑌𝐵))
52 breq1 4580 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝑥 𝑊𝑌 𝑊))
5351, 52anbi12d 742 . . . . . . . . 9 (𝑥 = 𝑌 → ((𝑥𝐵𝑥 𝑊) ↔ (𝑌𝐵𝑌 𝑊)))
5453adantl 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑌) → ((𝑥𝐵𝑥 𝑊) ↔ (𝑌𝐵𝑌 𝑊)))
5550, 54mpbird 245 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑌) → (𝑥𝐵𝑥 𝑊))
5649, 55jaodan 821 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑥 = 𝑋𝑥 = 𝑌)) → (𝑥𝐵𝑥 𝑊))
5743, 56sylan2b 490 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝑥𝐵𝑥 𝑊))
589, 10, 11, 38, 12dihvalb 35327 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝐵𝑥 𝑊)) → (𝐼𝑥) = (((DIsoB‘𝐾)‘𝑊)‘𝑥))
5941, 57, 58syl2anc 690 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝐼𝑥) = (((DIsoB‘𝐾)‘𝑊)‘𝑥))
6059iineq2dv 4473 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
6126, 40, 603eqtr4d 2653 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥))
62 fveq2 6087 . . . 4 (𝑥 = 𝑋 → (𝐼𝑥) = (𝐼𝑋))
63 fveq2 6087 . . . 4 (𝑥 = 𝑌 → (𝐼𝑥) = (𝐼𝑌))
6462, 63iinxprg 4531 . . 3 ((𝑋𝐵𝑌𝐵) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = ((𝐼𝑋) ∩ (𝐼𝑌)))
654, 5, 64syl2anc 690 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = ((𝐼𝑋) ∩ (𝐼𝑌)))
6661, 65eqtrd 2643 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  cin 3538  wss 3539  c0 3873  {cpr 4126   ciin 4450   class class class wbr 4577  cmpt 4637   I cid 4937  dom cdm 5027  cres 5029  cfv 5789  crio 6487  (class class class)co 6526  Basecbs 15643  lecple 15723  occoc 15724  glbcglb 16714  joincjn 16715  meetcmee 16716  Latclat 16816  Atomscatm 33351  HLchlt 33438  LHypclh 34071  LTrncltrn 34188  trLctrl 34246  TEndoctendo 34841  DIsoBcdib 35228  DIsoHcdih 35318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4942  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-map 7723  df-preset 16699  df-poset 16717  df-plt 16729  df-lub 16745  df-glb 16746  df-join 16747  df-meet 16748  df-p0 16810  df-p1 16811  df-lat 16817  df-clat 16879  df-oposet 33264  df-ol 33266  df-oml 33267  df-covers 33354  df-ats 33355  df-atl 33386  df-cvlat 33410  df-hlat 33439  df-lhyp 34075  df-laut 34076  df-ldil 34191  df-ltrn 34192  df-trl 34247  df-disoa 35119  df-dib 35229  df-dih 35319
This theorem is referenced by:  dihmeetbN  35393
  Copyright terms: Public domain W3C validator