Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elocv Structured version   Visualization version   GIF version

Theorem elocv 19934
 Description: Elementhood in the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvfval.v 𝑉 = (Base‘𝑊)
ocvfval.i , = (·𝑖𝑊)
ocvfval.f 𝐹 = (Scalar‘𝑊)
ocvfval.z 0 = (0g𝐹)
ocvfval.o = (ocv‘𝑊)
Assertion
Ref Expression
elocv (𝐴 ∈ ( 𝑆) ↔ (𝑆𝑉𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
Distinct variable groups:   𝑥, 0   𝑥,𝐴   𝑥,𝑉   𝑥,𝑊   𝑥, ,   𝑥,𝑆
Allowed substitution hints:   𝐹(𝑥)   (𝑥)

Proof of Theorem elocv
Dummy variables 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6179 . . . . 5 (𝐴 ∈ ( 𝑆) → 𝑆 ∈ dom )
2 n0i 3898 . . . . . . . . 9 (𝐴 ∈ ( 𝑆) → ¬ ( 𝑆) = ∅)
3 ocvfval.o . . . . . . . . . . . 12 = (ocv‘𝑊)
4 fvprc 6144 . . . . . . . . . . . 12 𝑊 ∈ V → (ocv‘𝑊) = ∅)
53, 4syl5eq 2667 . . . . . . . . . . 11 𝑊 ∈ V → = ∅)
65fveq1d 6152 . . . . . . . . . 10 𝑊 ∈ V → ( 𝑆) = (∅‘𝑆))
7 0fv 6186 . . . . . . . . . 10 (∅‘𝑆) = ∅
86, 7syl6eq 2671 . . . . . . . . 9 𝑊 ∈ V → ( 𝑆) = ∅)
92, 8nsyl2 142 . . . . . . . 8 (𝐴 ∈ ( 𝑆) → 𝑊 ∈ V)
10 ocvfval.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
11 ocvfval.i . . . . . . . . 9 , = (·𝑖𝑊)
12 ocvfval.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
13 ocvfval.z . . . . . . . . 9 0 = (0g𝐹)
1410, 11, 12, 13, 3ocvfval 19932 . . . . . . . 8 (𝑊 ∈ V → = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }))
159, 14syl 17 . . . . . . 7 (𝐴 ∈ ( 𝑆) → = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }))
1615dmeqd 5288 . . . . . 6 (𝐴 ∈ ( 𝑆) → dom = dom (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }))
17 fvex 6160 . . . . . . . . 9 (Base‘𝑊) ∈ V
1810, 17eqeltri 2694 . . . . . . . 8 𝑉 ∈ V
1918rabex 4775 . . . . . . 7 {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 } ∈ V
20 eqid 2621 . . . . . . 7 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 })
2119, 20dmmpti 5982 . . . . . 6 dom (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }) = 𝒫 𝑉
2216, 21syl6eq 2671 . . . . 5 (𝐴 ∈ ( 𝑆) → dom = 𝒫 𝑉)
231, 22eleqtrd 2700 . . . 4 (𝐴 ∈ ( 𝑆) → 𝑆 ∈ 𝒫 𝑉)
2423elpwid 4143 . . 3 (𝐴 ∈ ( 𝑆) → 𝑆𝑉)
2510, 11, 12, 13, 3ocvval 19933 . . . . 5 (𝑆𝑉 → ( 𝑆) = {𝑦𝑉 ∣ ∀𝑥𝑆 (𝑦 , 𝑥) = 0 })
2625eleq2d 2684 . . . 4 (𝑆𝑉 → (𝐴 ∈ ( 𝑆) ↔ 𝐴 ∈ {𝑦𝑉 ∣ ∀𝑥𝑆 (𝑦 , 𝑥) = 0 }))
27 oveq1 6614 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 , 𝑥) = (𝐴 , 𝑥))
2827eqeq1d 2623 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 , 𝑥) = 0 ↔ (𝐴 , 𝑥) = 0 ))
2928ralbidv 2980 . . . . 5 (𝑦 = 𝐴 → (∀𝑥𝑆 (𝑦 , 𝑥) = 0 ↔ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
3029elrab 3347 . . . 4 (𝐴 ∈ {𝑦𝑉 ∣ ∀𝑥𝑆 (𝑦 , 𝑥) = 0 } ↔ (𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
3126, 30syl6bb 276 . . 3 (𝑆𝑉 → (𝐴 ∈ ( 𝑆) ↔ (𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 )))
3224, 31biadan2 673 . 2 (𝐴 ∈ ( 𝑆) ↔ (𝑆𝑉 ∧ (𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 )))
33 3anass 1040 . 2 ((𝑆𝑉𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ) ↔ (𝑆𝑉 ∧ (𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 )))
3432, 33bitr4i 267 1 (𝐴 ∈ ( 𝑆) ↔ (𝑆𝑉𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907  {crab 2911  Vcvv 3186   ⊆ wss 3556  ∅c0 3893  𝒫 cpw 4132   ↦ cmpt 4675  dom cdm 5076  ‘cfv 5849  (class class class)co 6607  Basecbs 15784  Scalarcsca 15868  ·𝑖cip 15870  0gc0g 16024  ocvcocv 19926 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-fv 5857  df-ov 6610  df-ocv 19929 This theorem is referenced by:  ocvi  19935  ocvss  19936  ocvocv  19937  ocvlss  19938  ocv2ss  19939  unocv  19946  iunocv  19947  obselocv  19994  clsocv  22962  pjthlem2  23122
 Copyright terms: Public domain W3C validator