MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elocv Structured version   Visualization version   GIF version

Theorem elocv 20812
Description: Elementhood in the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvfval.v 𝑉 = (Base‘𝑊)
ocvfval.i , = (·𝑖𝑊)
ocvfval.f 𝐹 = (Scalar‘𝑊)
ocvfval.z 0 = (0g𝐹)
ocvfval.o = (ocv‘𝑊)
Assertion
Ref Expression
elocv (𝐴 ∈ ( 𝑆) ↔ (𝑆𝑉𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
Distinct variable groups:   𝑥, 0   𝑥,𝐴   𝑥,𝑉   𝑥,𝑊   𝑥, ,   𝑥,𝑆
Allowed substitution hints:   𝐹(𝑥)   (𝑥)

Proof of Theorem elocv
Dummy variables 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6702 . . . . 5 (𝐴 ∈ ( 𝑆) → 𝑆 ∈ dom )
2 n0i 4299 . . . . . . . . 9 (𝐴 ∈ ( 𝑆) → ¬ ( 𝑆) = ∅)
3 ocvfval.o . . . . . . . . . . . 12 = (ocv‘𝑊)
4 fvprc 6663 . . . . . . . . . . . 12 𝑊 ∈ V → (ocv‘𝑊) = ∅)
53, 4syl5eq 2868 . . . . . . . . . . 11 𝑊 ∈ V → = ∅)
65fveq1d 6672 . . . . . . . . . 10 𝑊 ∈ V → ( 𝑆) = (∅‘𝑆))
7 0fv 6709 . . . . . . . . . 10 (∅‘𝑆) = ∅
86, 7syl6eq 2872 . . . . . . . . 9 𝑊 ∈ V → ( 𝑆) = ∅)
92, 8nsyl2 143 . . . . . . . 8 (𝐴 ∈ ( 𝑆) → 𝑊 ∈ V)
10 ocvfval.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
11 ocvfval.i . . . . . . . . 9 , = (·𝑖𝑊)
12 ocvfval.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
13 ocvfval.z . . . . . . . . 9 0 = (0g𝐹)
1410, 11, 12, 13, 3ocvfval 20810 . . . . . . . 8 (𝑊 ∈ V → = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }))
159, 14syl 17 . . . . . . 7 (𝐴 ∈ ( 𝑆) → = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }))
1615dmeqd 5774 . . . . . 6 (𝐴 ∈ ( 𝑆) → dom = dom (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }))
1710fvexi 6684 . . . . . . . 8 𝑉 ∈ V
1817rabex 5235 . . . . . . 7 {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 } ∈ V
19 eqid 2821 . . . . . . 7 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 })
2018, 19dmmpti 6492 . . . . . 6 dom (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }) = 𝒫 𝑉
2116, 20syl6eq 2872 . . . . 5 (𝐴 ∈ ( 𝑆) → dom = 𝒫 𝑉)
221, 21eleqtrd 2915 . . . 4 (𝐴 ∈ ( 𝑆) → 𝑆 ∈ 𝒫 𝑉)
2322elpwid 4550 . . 3 (𝐴 ∈ ( 𝑆) → 𝑆𝑉)
2410, 11, 12, 13, 3ocvval 20811 . . . . 5 (𝑆𝑉 → ( 𝑆) = {𝑦𝑉 ∣ ∀𝑥𝑆 (𝑦 , 𝑥) = 0 })
2524eleq2d 2898 . . . 4 (𝑆𝑉 → (𝐴 ∈ ( 𝑆) ↔ 𝐴 ∈ {𝑦𝑉 ∣ ∀𝑥𝑆 (𝑦 , 𝑥) = 0 }))
26 oveq1 7163 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 , 𝑥) = (𝐴 , 𝑥))
2726eqeq1d 2823 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 , 𝑥) = 0 ↔ (𝐴 , 𝑥) = 0 ))
2827ralbidv 3197 . . . . 5 (𝑦 = 𝐴 → (∀𝑥𝑆 (𝑦 , 𝑥) = 0 ↔ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
2928elrab 3680 . . . 4 (𝐴 ∈ {𝑦𝑉 ∣ ∀𝑥𝑆 (𝑦 , 𝑥) = 0 } ↔ (𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
3025, 29syl6bb 289 . . 3 (𝑆𝑉 → (𝐴 ∈ ( 𝑆) ↔ (𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 )))
3123, 30biadanii 820 . 2 (𝐴 ∈ ( 𝑆) ↔ (𝑆𝑉 ∧ (𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 )))
32 3anass 1091 . 2 ((𝑆𝑉𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ) ↔ (𝑆𝑉 ∧ (𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 )))
3331, 32bitr4i 280 1 (𝐴 ∈ ( 𝑆) ↔ (𝑆𝑉𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  {crab 3142  Vcvv 3494  wss 3936  c0 4291  𝒫 cpw 4539  cmpt 5146  dom cdm 5555  cfv 6355  (class class class)co 7156  Basecbs 16483  Scalarcsca 16568  ·𝑖cip 16570  0gc0g 16713  ocvcocv 20804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-ocv 20807
This theorem is referenced by:  ocvi  20813  ocvss  20814  ocvocv  20815  ocvlss  20816  ocv2ss  20817  unocv  20824  iunocv  20825  obselocv  20872  clsocv  23853  pjthlem2  24041
  Copyright terms: Public domain W3C validator