MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt1 Structured version   Visualization version   GIF version

Theorem elrnmpt1 5406
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
elrnmpt1 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)

Proof of Theorem elrnmpt1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3234 . . . 4 𝑥 ∈ V
2 id 22 . . . . . . 7 (𝑥 = 𝑧𝑥 = 𝑧)
3 csbeq1a 3575 . . . . . . 7 (𝑥 = 𝑧𝐴 = 𝑧 / 𝑥𝐴)
42, 3eleq12d 2724 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝑧 / 𝑥𝐴))
5 csbeq1a 3575 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
65biantrud 527 . . . . . 6 (𝑥 = 𝑧 → (𝑧𝑧 / 𝑥𝐴 ↔ (𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
74, 6bitr2d 269 . . . . 5 (𝑥 = 𝑧 → ((𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵) ↔ 𝑥𝐴))
87equcoms 1993 . . . 4 (𝑧 = 𝑥 → ((𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵) ↔ 𝑥𝐴))
91, 8spcev 3331 . . 3 (𝑥𝐴 → ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵))
10 df-rex 2947 . . . . . 6 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥𝐴𝑦 = 𝐵))
11 nfv 1883 . . . . . . 7 𝑧(𝑥𝐴𝑦 = 𝐵)
12 nfcsb1v 3582 . . . . . . . . 9 𝑥𝑧 / 𝑥𝐴
1312nfcri 2787 . . . . . . . 8 𝑥 𝑧𝑧 / 𝑥𝐴
14 nfcsb1v 3582 . . . . . . . . 9 𝑥𝑧 / 𝑥𝐵
1514nfeq2 2809 . . . . . . . 8 𝑥 𝑦 = 𝑧 / 𝑥𝐵
1613, 15nfan 1868 . . . . . . 7 𝑥(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵)
175eqeq2d 2661 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦 = 𝐵𝑦 = 𝑧 / 𝑥𝐵))
184, 17anbi12d 747 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵)))
1911, 16, 18cbvex 2308 . . . . . 6 (∃𝑥(𝑥𝐴𝑦 = 𝐵) ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵))
2010, 19bitri 264 . . . . 5 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵))
21 eqeq1 2655 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 = 𝑧 / 𝑥𝐵𝐵 = 𝑧 / 𝑥𝐵))
2221anbi2d 740 . . . . . 6 (𝑦 = 𝐵 → ((𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵) ↔ (𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
2322exbidv 1890 . . . . 5 (𝑦 = 𝐵 → (∃𝑧(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵) ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
2420, 23syl5bb 272 . . . 4 (𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
25 rnmpt.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
2625rnmpt 5403 . . . 4 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
2724, 26elab2g 3385 . . 3 (𝐵𝑉 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
289, 27syl5ibr 236 . 2 (𝐵𝑉 → (𝑥𝐴𝐵 ∈ ran 𝐹))
2928impcom 445 1 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  wrex 2942  csb 3566  cmpt 4762  ran crn 5144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-mpt 4763  df-cnv 5151  df-dm 5153  df-rn 5154
This theorem is referenced by:  fliftel1  6600  minveclem4  23249  minvecolem4  27864  rexunirn  29458  esum2d  30283  totbndbnd  33718  rrnequiv  33764  suprnmpt  39669  disjf1o  39692  disjinfi  39694  choicefi  39706  elrnmpt1d  39749  rnmptbd2lem  39777  suprubrnmpt  39782  rnmptbdlem  39784  supxrleubrnmpt  39945  suprleubrnmpt  39962  infrnmptle  39963  infxrunb3rnmpt  39968  supminfrnmpt  39985  infxrgelbrnmpt  39996  fourierdlem31  40673  ioorrnopnlem  40842  sge0f1o  40917  sge0supre  40924  sge0gerp  40930  sge0iunmpt  40953  sge0rernmpt  40957  sge0reuz  40982  meadjiunlem  41000  iunhoiioolem  41210  vonioolem1  41215  smfpimcclem  41334
  Copyright terms: Public domain W3C validator