Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnequiv Structured version   Visualization version   GIF version

Theorem rrnequiv 33764
 Description: The supremum metric on ℝ↑𝐼 is equivalent to the ℝn metric. (Contributed by Jeff Madsen, 15-Sep-2015.)
Hypotheses
Ref Expression
rrnequiv.y 𝑌 = ((ℂflds ℝ) ↑s 𝐼)
rrnequiv.d 𝐷 = (dist‘𝑌)
rrnequiv.1 𝑋 = (ℝ ↑𝑚 𝐼)
rrnequiv.i (𝜑𝐼 ∈ Fin)
Assertion
Ref Expression
rrnequiv ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐷𝐺) ≤ (𝐹(ℝn𝐼)𝐺) ∧ (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(#‘𝐼)) · (𝐹𝐷𝐺))))

Proof of Theorem rrnequiv
Dummy variables 𝑘 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrnequiv.d . . . . . 6 𝐷 = (dist‘𝑌)
2 ovex 6718 . . . . . . . 8 (ℂflds ℝ) ∈ V
3 rrnequiv.i . . . . . . . . 9 (𝜑𝐼 ∈ Fin)
43adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐼 ∈ Fin)
5 rrnequiv.y . . . . . . . . 9 𝑌 = ((ℂflds ℝ) ↑s 𝐼)
6 reex 10065 . . . . . . . . . 10 ℝ ∈ V
7 eqid 2651 . . . . . . . . . . 11 (ℂflds ℝ) = (ℂflds ℝ)
8 eqid 2651 . . . . . . . . . . 11 (Scalar‘ℂfld) = (Scalar‘ℂfld)
97, 8resssca 16078 . . . . . . . . . 10 (ℝ ∈ V → (Scalar‘ℂfld) = (Scalar‘(ℂflds ℝ)))
106, 9ax-mp 5 . . . . . . . . 9 (Scalar‘ℂfld) = (Scalar‘(ℂflds ℝ))
115, 10pwsval 16193 . . . . . . . 8 (((ℂflds ℝ) ∈ V ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
122, 4, 11sylancr 696 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
1312fveq2d 6233 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (dist‘𝑌) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
141, 13syl5eq 2697 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐷 = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
1514oveqd 6707 . . . 4 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = (𝐹(dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))𝐺))
16 fconstmpt 5197 . . . . . 6 (𝐼 × {(ℂflds ℝ)}) = (𝑘𝐼 ↦ (ℂflds ℝ))
1716oveq2i 6701 . . . . 5 ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})) = ((Scalar‘ℂfld)Xs(𝑘𝐼 ↦ (ℂflds ℝ)))
18 eqid 2651 . . . . 5 (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
19 fvexd 6241 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (Scalar‘ℂfld) ∈ V)
202a1i 11 . . . . . 6 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (ℂflds ℝ) ∈ V)
2120ralrimiva 2995 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑘𝐼 (ℂflds ℝ) ∈ V)
22 simprl 809 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐹𝑋)
23 rrnequiv.1 . . . . . . 7 𝑋 = (ℝ ↑𝑚 𝐼)
24 ax-resscn 10031 . . . . . . . . . . 11 ℝ ⊆ ℂ
25 cnfldbas 19798 . . . . . . . . . . . 12 ℂ = (Base‘ℂfld)
267, 25ressbas2 15978 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ℝ = (Base‘(ℂflds ℝ)))
2724, 26ax-mp 5 . . . . . . . . . 10 ℝ = (Base‘(ℂflds ℝ))
285, 27pwsbas 16194 . . . . . . . . 9 (((ℂflds ℝ) ∈ V ∧ 𝐼 ∈ Fin) → (ℝ ↑𝑚 𝐼) = (Base‘𝑌))
292, 4, 28sylancr 696 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (ℝ ↑𝑚 𝐼) = (Base‘𝑌))
3012fveq2d 6233 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (Base‘𝑌) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3129, 30eqtrd 2685 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (ℝ ↑𝑚 𝐼) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3223, 31syl5eq 2697 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝑋 = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3322, 32eleqtrd 2732 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐹 ∈ (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
34 simprr 811 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐺𝑋)
3534, 32eleqtrd 2732 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐺 ∈ (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
36 cnfldds 19804 . . . . . . . 8 (abs ∘ − ) = (dist‘ℂfld)
377, 36ressds 16120 . . . . . . 7 (ℝ ∈ V → (abs ∘ − ) = (dist‘(ℂflds ℝ)))
386, 37ax-mp 5 . . . . . 6 (abs ∘ − ) = (dist‘(ℂflds ℝ))
3938reseq1i 5424 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘(ℂflds ℝ)) ↾ (ℝ × ℝ))
40 eqid 2651 . . . . 5 (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
4117, 18, 19, 4, 21, 33, 35, 27, 39, 40prdsdsval3 16192 . . . 4 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))𝐺) = sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
4215, 41eqtrd 2685 . . 3 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
43 eqid 2651 . . . . . . . . . 10 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
4423, 43rrndstprj1 33759 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑘𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
4544an32s 863 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
463, 45sylanl1 683 . . . . . . 7 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
4746ralrimiva 2995 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
48 ovex 6718 . . . . . . . 8 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ V
4948rgenw 2953 . . . . . . 7 𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ V
50 eqid 2651 . . . . . . . 8 (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) = (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))
51 breq1 4688 . . . . . . . 8 (𝑧 = ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) → (𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺)))
5250, 51ralrnmpt 6408 . . . . . . 7 (∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ V → (∀𝑧 ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺)))
5349, 52ax-mp 5 . . . . . 6 (∀𝑧 ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
5447, 53sylibr 224 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑧 ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))𝑧 ≤ (𝐹(ℝn𝐼)𝐺))
5523rrnmet 33758 . . . . . . . . 9 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
564, 55syl 17 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (ℝn𝐼) ∈ (Met‘𝑋))
57 metge0 22197 . . . . . . . 8 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → 0 ≤ (𝐹(ℝn𝐼)𝐺))
5856, 22, 34, 57syl3anc 1366 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (𝐹(ℝn𝐼)𝐺))
59 elsni 4227 . . . . . . . 8 (𝑧 ∈ {0} → 𝑧 = 0)
6059breq1d 4695 . . . . . . 7 (𝑧 ∈ {0} → (𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ 0 ≤ (𝐹(ℝn𝐼)𝐺)))
6158, 60syl5ibrcom 237 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝑧 ∈ {0} → 𝑧 ≤ (𝐹(ℝn𝐼)𝐺)))
6261ralrimiv 2994 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑧 ∈ {0}𝑧 ≤ (𝐹(ℝn𝐼)𝐺))
63 ralunb 3827 . . . . 5 (∀𝑧 ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ (∀𝑧 ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ∧ ∀𝑧 ∈ {0}𝑧 ≤ (𝐹(ℝn𝐼)𝐺)))
6454, 62, 63sylanbrc 699 . . . 4 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑧 ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})𝑧 ≤ (𝐹(ℝn𝐼)𝐺))
6517, 18, 19, 4, 21, 27, 33prdsbascl 16190 . . . . . . . . . . 11 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑘𝐼 (𝐹𝑘) ∈ ℝ)
6665r19.21bi 2961 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
6717, 18, 19, 4, 21, 27, 35prdsbascl 16190 . . . . . . . . . . 11 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑘𝐼 (𝐺𝑘) ∈ ℝ)
6867r19.21bi 2961 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
6943remet 22640 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)
70 metcl 22184 . . . . . . . . . . 11 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) ∧ (𝐹𝑘) ∈ ℝ ∧ (𝐺𝑘) ∈ ℝ) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ℝ)
7169, 70mp3an1 1451 . . . . . . . . . 10 (((𝐹𝑘) ∈ ℝ ∧ (𝐺𝑘) ∈ ℝ) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ℝ)
7266, 68, 71syl2anc 694 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ℝ)
7372, 50fmptd 6425 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))):𝐼⟶ℝ)
74 frn 6091 . . . . . . . 8 ((𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))):𝐼⟶ℝ → ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ⊆ ℝ)
7573, 74syl 17 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ⊆ ℝ)
76 ressxr 10121 . . . . . . 7 ℝ ⊆ ℝ*
7775, 76syl6ss 3648 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ⊆ ℝ*)
78 0xr 10124 . . . . . . . 8 0 ∈ ℝ*
7978a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ∈ ℝ*)
8079snssd 4372 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → {0} ⊆ ℝ*)
8177, 80unssd 3822 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}) ⊆ ℝ*)
82 metcl 22184 . . . . . . 7 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → (𝐹(ℝn𝐼)𝐺) ∈ ℝ)
8356, 22, 34, 82syl3anc 1366 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(ℝn𝐼)𝐺) ∈ ℝ)
8476, 83sseldi 3634 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(ℝn𝐼)𝐺) ∈ ℝ*)
85 supxrleub 12194 . . . . 5 (((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}) ⊆ ℝ* ∧ (𝐹(ℝn𝐼)𝐺) ∈ ℝ*) → (sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ) ≤ (𝐹(ℝn𝐼)𝐺) ↔ ∀𝑧 ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})𝑧 ≤ (𝐹(ℝn𝐼)𝐺)))
8681, 84, 85syl2anc 694 . . . 4 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ) ≤ (𝐹(ℝn𝐼)𝐺) ↔ ∀𝑧 ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})𝑧 ≤ (𝐹(ℝn𝐼)𝐺)))
8764, 86mpbird 247 . . 3 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ) ≤ (𝐹(ℝn𝐼)𝐺))
8842, 87eqbrtrd 4707 . 2 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) ≤ (𝐹(ℝn𝐼)𝐺))
89 rzal 4106 . . . . . . 7 (𝐼 = ∅ → ∀𝑘𝐼 (𝐹𝑘) = (𝐺𝑘))
9022, 23syl6eleq 2740 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐹 ∈ (ℝ ↑𝑚 𝐼))
91 elmapi 7921 . . . . . . . . 9 (𝐹 ∈ (ℝ ↑𝑚 𝐼) → 𝐹:𝐼⟶ℝ)
92 ffn 6083 . . . . . . . . 9 (𝐹:𝐼⟶ℝ → 𝐹 Fn 𝐼)
9390, 91, 923syl 18 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐹 Fn 𝐼)
9434, 23syl6eleq 2740 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐺 ∈ (ℝ ↑𝑚 𝐼))
95 elmapi 7921 . . . . . . . . 9 (𝐺 ∈ (ℝ ↑𝑚 𝐼) → 𝐺:𝐼⟶ℝ)
96 ffn 6083 . . . . . . . . 9 (𝐺:𝐼⟶ℝ → 𝐺 Fn 𝐼)
9794, 95, 963syl 18 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐺 Fn 𝐼)
98 eqfnfv 6351 . . . . . . . 8 ((𝐹 Fn 𝐼𝐺 Fn 𝐼) → (𝐹 = 𝐺 ↔ ∀𝑘𝐼 (𝐹𝑘) = (𝐺𝑘)))
9993, 97, 98syl2anc 694 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 = 𝐺 ↔ ∀𝑘𝐼 (𝐹𝑘) = (𝐺𝑘)))
10089, 99syl5ibr 236 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐼 = ∅ → 𝐹 = 𝐺))
101100imp 444 . . . . 5 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 = ∅) → 𝐹 = 𝐺)
102101oveq1d 6705 . . . 4 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 = ∅) → (𝐹(ℝn𝐼)𝐺) = (𝐺(ℝn𝐼)𝐺))
103 met0 22195 . . . . . . 7 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝐺𝑋) → (𝐺(ℝn𝐼)𝐺) = 0)
10456, 34, 103syl2anc 694 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐺(ℝn𝐼)𝐺) = 0)
105 hashcl 13185 . . . . . . . . . 10 (𝐼 ∈ Fin → (#‘𝐼) ∈ ℕ0)
1064, 105syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (#‘𝐼) ∈ ℕ0)
107106nn0red 11390 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (#‘𝐼) ∈ ℝ)
108106nn0ge0d 11392 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (#‘𝐼))
109107, 108resqrtcld 14200 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (√‘(#‘𝐼)) ∈ ℝ)
1105, 1, 23repwsmet 33763 . . . . . . . . 9 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋))
1114, 110syl 17 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐷 ∈ (Met‘𝑋))
112 metcl 22184 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) ∈ ℝ)
113111, 22, 34, 112syl3anc 1366 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) ∈ ℝ)
114107, 108sqrtge0d 14203 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (√‘(#‘𝐼)))
115 metge0 22197 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → 0 ≤ (𝐹𝐷𝐺))
116111, 22, 34, 115syl3anc 1366 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (𝐹𝐷𝐺))
117109, 113, 114, 116mulge0d 10642 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ ((√‘(#‘𝐼)) · (𝐹𝐷𝐺)))
118104, 117eqbrtrd 4707 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐺(ℝn𝐼)𝐺) ≤ ((√‘(#‘𝐼)) · (𝐹𝐷𝐺)))
119118adantr 480 . . . 4 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 = ∅) → (𝐺(ℝn𝐼)𝐺) ≤ ((√‘(#‘𝐼)) · (𝐹𝐷𝐺)))
120102, 119eqbrtrd 4707 . . 3 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 = ∅) → (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(#‘𝐼)) · (𝐹𝐷𝐺)))
12183adantr 480 . . . . . . 7 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹(ℝn𝐼)𝐺) ∈ ℝ)
122109, 113remulcld 10108 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ((√‘(#‘𝐼)) · (𝐹𝐷𝐺)) ∈ ℝ)
123122adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((√‘(#‘𝐼)) · (𝐹𝐷𝐺)) ∈ ℝ)
124 rpre 11877 . . . . . . . . 9 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
125124ad2antll 765 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
126123, 125readdcld 10107 . . . . . . 7 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (((√‘(#‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟) ∈ ℝ)
1274adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐼 ∈ Fin)
128 simprl 809 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐼 ≠ ∅)
129 eldifsn 4350 . . . . . . . . . 10 (𝐼 ∈ (Fin ∖ {∅}) ↔ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅))
130127, 128, 129sylanbrc 699 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐼 ∈ (Fin ∖ {∅}))
13122adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐹𝑋)
13234adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐺𝑋)
133113adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹𝐷𝐺) ∈ ℝ)
134 simprr 811 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
135 hashnncl 13195 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ Fin → ((#‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
136127, 135syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((#‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
137128, 136mpbird 247 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (#‘𝐼) ∈ ℕ)
138137nnrpd 11908 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (#‘𝐼) ∈ ℝ+)
139138rpsqrtcld 14194 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (√‘(#‘𝐼)) ∈ ℝ+)
140134, 139rpdivcld 11927 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝑟 / (√‘(#‘𝐼))) ∈ ℝ+)
141140rpred 11910 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝑟 / (√‘(#‘𝐼))) ∈ ℝ)
142133, 141readdcld 10107 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((𝐹𝐷𝐺) + (𝑟 / (√‘(#‘𝐼)))) ∈ ℝ)
143 0red 10079 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 0 ∈ ℝ)
144116adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 0 ≤ (𝐹𝐷𝐺))
145133, 140ltaddrpd 11943 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹𝐷𝐺) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(#‘𝐼)))))
146143, 133, 142, 144, 145lelttrd 10233 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 0 < ((𝐹𝐷𝐺) + (𝑟 / (√‘(#‘𝐼)))))
147142, 146elrpd 11907 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((𝐹𝐷𝐺) + (𝑟 / (√‘(#‘𝐼)))) ∈ ℝ+)
14872adantlr 751 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ℝ)
149133adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → (𝐹𝐷𝐺) ∈ ℝ)
150142adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝐷𝐺) + (𝑟 / (√‘(#‘𝐼)))) ∈ ℝ)
15181ad2antrr 762 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}) ⊆ ℝ*)
152 ssun1 3809 . . . . . . . . . . . . . 14 ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ⊆ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})
153 simpr 476 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → 𝑘𝐼)
15450elrnmpt1 5406 . . . . . . . . . . . . . . 15 ((𝑘𝐼 ∧ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ V) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))))
155153, 48, 154sylancl 695 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))))
156152, 155sseldi 3634 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}))
157 supxrub 12192 . . . . . . . . . . . . 13 (((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}) ⊆ ℝ* ∧ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
158151, 156, 157syl2anc 694 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
15942ad2antrr 762 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → (𝐹𝐷𝐺) = sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
160158, 159breqtrrd 4713 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹𝐷𝐺))
161145adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → (𝐹𝐷𝐺) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(#‘𝐼)))))
162148, 149, 150, 160, 161lelttrd 10233 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(#‘𝐼)))))
163162ralrimiva 2995 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(#‘𝐼)))))
16423, 43rrndstprj2 33760 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (((𝐹𝐷𝐺) + (𝑟 / (√‘(#‘𝐼)))) ∈ ℝ+ ∧ ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(#‘𝐼)))))) → (𝐹(ℝn𝐼)𝐺) < (((𝐹𝐷𝐺) + (𝑟 / (√‘(#‘𝐼)))) · (√‘(#‘𝐼))))
165130, 131, 132, 147, 163, 164syl32anc 1374 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹(ℝn𝐼)𝐺) < (((𝐹𝐷𝐺) + (𝑟 / (√‘(#‘𝐼)))) · (√‘(#‘𝐼))))
166133recnd 10106 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹𝐷𝐺) ∈ ℂ)
167141recnd 10106 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝑟 / (√‘(#‘𝐼))) ∈ ℂ)
168109adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (√‘(#‘𝐼)) ∈ ℝ)
169168recnd 10106 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (√‘(#‘𝐼)) ∈ ℂ)
170166, 167, 169adddird 10103 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (((𝐹𝐷𝐺) + (𝑟 / (√‘(#‘𝐼)))) · (√‘(#‘𝐼))) = (((𝐹𝐷𝐺) · (√‘(#‘𝐼))) + ((𝑟 / (√‘(#‘𝐼))) · (√‘(#‘𝐼)))))
171166, 169mulcomd 10099 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((𝐹𝐷𝐺) · (√‘(#‘𝐼))) = ((√‘(#‘𝐼)) · (𝐹𝐷𝐺)))
172125recnd 10106 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈ ℂ)
173139rpne0d 11915 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (√‘(#‘𝐼)) ≠ 0)
174172, 169, 173divcan1d 10840 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((𝑟 / (√‘(#‘𝐼))) · (√‘(#‘𝐼))) = 𝑟)
175171, 174oveq12d 6708 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (((𝐹𝐷𝐺) · (√‘(#‘𝐼))) + ((𝑟 / (√‘(#‘𝐼))) · (√‘(#‘𝐼)))) = (((√‘(#‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
176170, 175eqtrd 2685 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (((𝐹𝐷𝐺) + (𝑟 / (√‘(#‘𝐼)))) · (√‘(#‘𝐼))) = (((√‘(#‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
177165, 176breqtrd 4711 . . . . . . 7 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹(ℝn𝐼)𝐺) < (((√‘(#‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
178121, 126, 177ltled 10223 . . . . . 6 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(#‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
179178anassrs 681 . . . . 5 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(#‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
180179ralrimiva 2995 . . . 4 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 ≠ ∅) → ∀𝑟 ∈ ℝ+ (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(#‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
181 alrple 12075 . . . . . 6 (((𝐹(ℝn𝐼)𝐺) ∈ ℝ ∧ ((√‘(#‘𝐼)) · (𝐹𝐷𝐺)) ∈ ℝ) → ((𝐹(ℝn𝐼)𝐺) ≤ ((√‘(#‘𝐼)) · (𝐹𝐷𝐺)) ↔ ∀𝑟 ∈ ℝ+ (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(#‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟)))
18283, 122, 181syl2anc 694 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹(ℝn𝐼)𝐺) ≤ ((√‘(#‘𝐼)) · (𝐹𝐷𝐺)) ↔ ∀𝑟 ∈ ℝ+ (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(#‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟)))
183182adantr 480 . . . 4 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 ≠ ∅) → ((𝐹(ℝn𝐼)𝐺) ≤ ((√‘(#‘𝐼)) · (𝐹𝐷𝐺)) ↔ ∀𝑟 ∈ ℝ+ (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(#‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟)))
184180, 183mpbird 247 . . 3 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 ≠ ∅) → (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(#‘𝐼)) · (𝐹𝐷𝐺)))
185120, 184pm2.61dane 2910 . 2 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(#‘𝐼)) · (𝐹𝐷𝐺)))
18688, 185jca 553 1 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐷𝐺) ≤ (𝐹(ℝn𝐼)𝐺) ∧ (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(#‘𝐼)) · (𝐹𝐷𝐺))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  Vcvv 3231   ∖ cdif 3604   ∪ cun 3605   ⊆ wss 3607  ∅c0 3948  {csn 4210   class class class wbr 4685   ↦ cmpt 4762   × cxp 5141  ran crn 5144   ↾ cres 5145   ∘ ccom 5147   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↑𝑚 cmap 7899  Fincfn 7997  supcsup 8387  ℂcc 9972  ℝcr 9973  0cc0 9974   + caddc 9977   · cmul 9979  ℝ*cxr 10111   < clt 10112   ≤ cle 10113   − cmin 10304   / cdiv 10722  ℕcn 11058  ℕ0cn0 11330  ℝ+crp 11870  #chash 13157  √csqrt 14017  abscabs 14018  Basecbs 15904   ↾s cress 15905  Scalarcsca 15991  distcds 15997  Xscprds 16153   ↑s cpws 16154  Metcme 19780  ℂfldccnfld 19794  ℝncrrn 33754 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-prds 16155  df-pws 16157  df-xmet 19787  df-met 19788  df-cnfld 19795  df-rrn 33755 This theorem is referenced by:  rrntotbnd  33765
 Copyright terms: Public domain W3C validator