Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqgvscpbl Structured version   Visualization version   GIF version

Theorem eqgvscpbl 30919
Description: The left coset equivalence relation is compatible with the scalar multiplication operation. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
eqgvscpbl.v 𝐵 = (Base‘𝑀)
eqgvscpbl.e = (𝑀 ~QG 𝐺)
eqgvscpbl.s 𝑆 = (Base‘(Scalar‘𝑀))
eqgvscpbl.p · = ( ·𝑠𝑀)
eqgvscpbl.m (𝜑𝑀 ∈ LMod)
eqgvscpbl.g (𝜑𝐺 ∈ (LSubSp‘𝑀))
eqgvscpbl.k (𝜑𝐾𝑆)
Assertion
Ref Expression
eqgvscpbl (𝜑 → (𝑋 𝑌 → (𝐾 · 𝑋) (𝐾 · 𝑌)))

Proof of Theorem eqgvscpbl
StepHypRef Expression
1 eqgvscpbl.m . . . . . 6 (𝜑𝑀 ∈ LMod)
21adantr 483 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝑀 ∈ LMod)
3 eqgvscpbl.k . . . . . 6 (𝜑𝐾𝑆)
43adantr 483 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝐾𝑆)
5 simpr1 1190 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝑋𝐵)
6 eqgvscpbl.v . . . . . 6 𝐵 = (Base‘𝑀)
7 eqid 2821 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
8 eqgvscpbl.p . . . . . 6 · = ( ·𝑠𝑀)
9 eqgvscpbl.s . . . . . 6 𝑆 = (Base‘(Scalar‘𝑀))
106, 7, 8, 9lmodvscl 19651 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑋𝐵) → (𝐾 · 𝑋) ∈ 𝐵)
112, 4, 5, 10syl3anc 1367 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · 𝑋) ∈ 𝐵)
12 simpr2 1191 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝑌𝐵)
136, 7, 8, 9lmodvscl 19651 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑌𝐵) → (𝐾 · 𝑌) ∈ 𝐵)
142, 4, 12, 13syl3anc 1367 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · 𝑌) ∈ 𝐵)
151ad2antrr 724 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑀 ∈ LMod)
163ad2antrr 724 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝐾𝑆)
17 lmodgrp 19641 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
1815, 17syl 17 . . . . . . . . . 10 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑀 ∈ Grp)
19 simplr 767 . . . . . . . . . 10 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑋𝐵)
20 eqid 2821 . . . . . . . . . . 11 (invg𝑀) = (invg𝑀)
216, 20grpinvcl 18151 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ 𝑋𝐵) → ((invg𝑀)‘𝑋) ∈ 𝐵)
2218, 19, 21syl2anc 586 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → ((invg𝑀)‘𝑋) ∈ 𝐵)
23 simpr 487 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑌𝐵)
24 eqid 2821 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
256, 24, 7, 8, 9lmodvsdi 19657 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ (𝐾𝑆 ∧ ((invg𝑀)‘𝑋) ∈ 𝐵𝑌𝐵)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = ((𝐾 · ((invg𝑀)‘𝑋))(+g𝑀)(𝐾 · 𝑌)))
2615, 16, 22, 23, 25syl13anc 1368 . . . . . . . 8 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = ((𝐾 · ((invg𝑀)‘𝑋))(+g𝑀)(𝐾 · 𝑌)))
276, 7, 8, 20, 9lmodvsinv2 19809 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑋𝐵) → (𝐾 · ((invg𝑀)‘𝑋)) = ((invg𝑀)‘(𝐾 · 𝑋)))
2815, 16, 19, 27syl3anc 1367 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → (𝐾 · ((invg𝑀)‘𝑋)) = ((invg𝑀)‘(𝐾 · 𝑋)))
2928oveq1d 7171 . . . . . . . 8 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → ((𝐾 · ((invg𝑀)‘𝑋))(+g𝑀)(𝐾 · 𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
3026, 29eqtrd 2856 . . . . . . 7 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
3130anasss 469 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
32313adantr3 1167 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
33 eqgvscpbl.g . . . . . . 7 (𝜑𝐺 ∈ (LSubSp‘𝑀))
3433adantr 483 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝐺 ∈ (LSubSp‘𝑀))
35 simpr3 1192 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)
36 eqid 2821 . . . . . . 7 (LSubSp‘𝑀) = (LSubSp‘𝑀)
377, 8, 9, 36lssvscl 19727 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) ∧ (𝐾𝑆 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) ∈ 𝐺)
382, 34, 4, 35, 37syl22anc 836 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) ∈ 𝐺)
3932, 38eqeltrrd 2914 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)
4011, 14, 393jca 1124 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺))
4140ex 415 . 2 (𝜑 → ((𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺) → ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)))
421, 17syl 17 . . 3 (𝜑𝑀 ∈ Grp)
4336lsssubg 19729 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀))
441, 33, 43syl2anc 586 . . . 4 (𝜑𝐺 ∈ (SubGrp‘𝑀))
456subgss 18280 . . . 4 (𝐺 ∈ (SubGrp‘𝑀) → 𝐺𝐵)
4644, 45syl 17 . . 3 (𝜑𝐺𝐵)
47 eqgvscpbl.e . . . 4 = (𝑀 ~QG 𝐺)
486, 20, 24, 47eqgval 18329 . . 3 ((𝑀 ∈ Grp ∧ 𝐺𝐵) → (𝑋 𝑌 ↔ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)))
4942, 46, 48syl2anc 586 . 2 (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)))
506, 20, 24, 47eqgval 18329 . . 3 ((𝑀 ∈ Grp ∧ 𝐺𝐵) → ((𝐾 · 𝑋) (𝐾 · 𝑌) ↔ ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)))
5142, 46, 50syl2anc 586 . 2 (𝜑 → ((𝐾 · 𝑋) (𝐾 · 𝑌) ↔ ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)))
5241, 49, 513imtr4d 296 1 (𝜑 → (𝑋 𝑌 → (𝐾 · 𝑋) (𝐾 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3936   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  Scalarcsca 16568   ·𝑠 cvsca 16569  Grpcgrp 18103  invgcminusg 18104  SubGrpcsubg 18273   ~QG cqg 18275  LModclmod 19634  LSubSpclss 19703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-eqg 18278  df-mgp 19240  df-ur 19252  df-ring 19299  df-lmod 19636  df-lss 19704
This theorem is referenced by:  qusvscpbl  30920
  Copyright terms: Public domain W3C validator