MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-in Structured version   Visualization version   GIF version

Theorem ex-in 28204
Description: Example for df-in 3943. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-in ({1, 3} ∩ {1, 8}) = {1}

Proof of Theorem ex-in
StepHypRef Expression
1 df-pr 4570 . . 3 {1, 8} = ({1} ∪ {8})
21ineq2i 4186 . 2 ({1, 3} ∩ {1, 8}) = ({1, 3} ∩ ({1} ∪ {8}))
3 indi 4250 . . 3 ({1, 3} ∩ ({1} ∪ {8})) = (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8}))
4 snsspr1 4747 . . . . . 6 {1} ⊆ {1, 3}
5 sseqin2 4192 . . . . . 6 ({1} ⊆ {1, 3} ↔ ({1, 3} ∩ {1}) = {1})
64, 5mpbi 232 . . . . 5 ({1, 3} ∩ {1}) = {1}
7 1re 10641 . . . . . . . 8 1 ∈ ℝ
8 1lt8 11836 . . . . . . . 8 1 < 8
97, 8gtneii 10752 . . . . . . 7 8 ≠ 1
10 3re 11718 . . . . . . . 8 3 ∈ ℝ
11 3lt8 11834 . . . . . . . 8 3 < 8
1210, 11gtneii 10752 . . . . . . 7 8 ≠ 3
139, 12nelpri 4594 . . . . . 6 ¬ 8 ∈ {1, 3}
14 disjsn 4647 . . . . . 6 (({1, 3} ∩ {8}) = ∅ ↔ ¬ 8 ∈ {1, 3})
1513, 14mpbir 233 . . . . 5 ({1, 3} ∩ {8}) = ∅
166, 15uneq12i 4137 . . . 4 (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = ({1} ∪ ∅)
17 un0 4344 . . . 4 ({1} ∪ ∅) = {1}
1816, 17eqtri 2844 . . 3 (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = {1}
193, 18eqtri 2844 . 2 ({1, 3} ∩ ({1} ∪ {8})) = {1}
202, 19eqtri 2844 1 ({1, 3} ∩ {1, 8}) = {1}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2114  cun 3934  cin 3935  wss 3936  c0 4291  {csn 4567  {cpr 4569  1c1 10538  3c3 11694  8c8 11699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator