Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege110 Structured version   Visualization version   GIF version

Theorem frege110 40339
Description: Proposition 110 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege110.x 𝑋𝐴
frege110.y 𝑌𝐵
frege110.m 𝑀𝐶
frege110.r 𝑅𝐷
Assertion
Ref Expression
frege110 (∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))
Distinct variable groups:   𝑅,𝑎   𝑋,𝑎   𝑌,𝑎
Allowed substitution hints:   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑀(𝑎)

Proof of Theorem frege110
StepHypRef Expression
1 frege110.x . . 3 𝑋𝐴
2 frege110.r . . 3 𝑅𝐷
31, 2frege109 40338 . 2 𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋})
4 frege110.y . . . 4 𝑌𝐵
5 frege110.m . . . 4 𝑀𝐶
6 imaundir 6009 . . . . 5 (((t+‘𝑅) ∪ I ) “ {𝑋}) = (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋}))
7 fvex 6683 . . . . . . 7 (t+‘𝑅) ∈ V
8 imaexg 7620 . . . . . . 7 ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑋}) ∈ V)
97, 8ax-mp 5 . . . . . 6 ((t+‘𝑅) “ {𝑋}) ∈ V
10 imai 5942 . . . . . . 7 ( I “ {𝑋}) = {𝑋}
11 snex 5332 . . . . . . 7 {𝑋} ∈ V
1210, 11eqeltri 2909 . . . . . 6 ( I “ {𝑋}) ∈ V
139, 12unex 7469 . . . . 5 (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋})) ∈ V
146, 13eqeltri 2909 . . . 4 (((t+‘𝑅) ∪ I ) “ {𝑋}) ∈ V
154, 5, 2, 14frege78 40307 . . 3 (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) → (𝑌(t+‘𝑅)𝑀𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}))))
161elexi 3513 . . . . . . 7 𝑋 ∈ V
17 vex 3497 . . . . . . 7 𝑎 ∈ V
1816, 17elimasn 5954 . . . . . 6 (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ ⟨𝑋, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I ))
19 df-br 5067 . . . . . 6 (𝑋((t+‘𝑅) ∪ I )𝑎 ↔ ⟨𝑋, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I ))
2018, 19bitr4i 280 . . . . 5 (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑎)
2120imbi2i 338 . . . 4 ((𝑌𝑅𝑎𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎))
2221albii 1820 . . 3 (∀𝑎(𝑌𝑅𝑎𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ ∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎))
235elexi 3513 . . . . . 6 𝑀 ∈ V
2416, 23elimasn 5954 . . . . 5 (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ ⟨𝑋, 𝑀⟩ ∈ ((t+‘𝑅) ∪ I ))
25 df-br 5067 . . . . 5 (𝑋((t+‘𝑅) ∪ I )𝑀 ↔ ⟨𝑋, 𝑀⟩ ∈ ((t+‘𝑅) ∪ I ))
2624, 25bitr4i 280 . . . 4 (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑀)
2726imbi2i 338 . . 3 ((𝑌(t+‘𝑅)𝑀𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))
2815, 22, 273imtr3g 297 . 2 (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)))
293, 28ax-mp 5 1 (∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wcel 2114  Vcvv 3494  cun 3934  {csn 4567  cop 4573   class class class wbr 5066   I cid 5459  cima 5558  cfv 6355  t+ctcl 14345   hereditary whe 40138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-frege1 40156  ax-frege2 40157  ax-frege8 40175  ax-frege28 40196  ax-frege31 40200  ax-frege41 40211  ax-frege52a 40223  ax-frege52c 40254  ax-frege58b 40267
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-seq 13371  df-trcl 14347  df-relexp 14380  df-he 40139
This theorem is referenced by:  frege124  40353
  Copyright terms: Public domain W3C validator