Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frgrwopreg2 Structured version   Visualization version   GIF version

Theorem frgrwopreg2 41486
Description: According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 11-May-2021.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreg2 ((𝐺 ∈ FriendGraph ∧ (#‘𝐵) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝐵   𝑥,𝐸   𝑣,𝐴,𝑤,𝑥   𝑤,𝐵   𝑣,𝐺,𝑤   𝑣,𝑉,𝑤   𝑣,𝐵
Allowed substitution hints:   𝐷(𝑤,𝑣)   𝐸(𝑤,𝑣)   𝐾(𝑤,𝑣)

Proof of Theorem frgrwopreg2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 frgrwopreg.d . . . . . 6 𝐷 = (VtxDeg‘𝐺)
3 frgrwopreg.a . . . . . 6 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 frgrwopreg.b . . . . . 6 𝐵 = (𝑉𝐴)
51, 2, 3, 4frgrwopreglem1 41479 . . . . 5 (𝐴 ∈ V ∧ 𝐵 ∈ V)
65simpri 476 . . . 4 𝐵 ∈ V
7 hash1snb 13016 . . . 4 (𝐵 ∈ V → ((#‘𝐵) = 1 ↔ ∃𝑣 𝐵 = {𝑣}))
86, 7ax-mp 5 . . 3 ((#‘𝐵) = 1 ↔ ∃𝑣 𝐵 = {𝑣})
9 exsnrex 4163 . . . . 5 (∃𝑣 𝐵 = {𝑣} ↔ ∃𝑣𝐵 𝐵 = {𝑣})
10 difss 3694 . . . . . . . 8 (𝑉𝐴) ⊆ 𝑉
114, 10eqsstri 3593 . . . . . . 7 𝐵𝑉
12 ssrexv 3625 . . . . . . 7 (𝐵𝑉 → (∃𝑣𝐵 𝐵 = {𝑣} → ∃𝑣𝑉 𝐵 = {𝑣}))
1311, 12ax-mp 5 . . . . . 6 (∃𝑣𝐵 𝐵 = {𝑣} → ∃𝑣𝑉 𝐵 = {𝑣})
14 frgrwopreg.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
151, 2, 3, 4, 14frgrwopreglem4 41482 . . . . . . . 8 (𝐺 ∈ FriendGraph → ∀𝑤𝐴𝑢𝐵 {𝑤, 𝑢} ∈ 𝐸)
16 ralcom 3074 . . . . . . . . 9 (∀𝑤𝐴𝑢𝐵 {𝑤, 𝑢} ∈ 𝐸 ↔ ∀𝑢𝐵𝑤𝐴 {𝑤, 𝑢} ∈ 𝐸)
17 vsnid 4151 . . . . . . . . . . . 12 𝑣 ∈ {𝑣}
18 eleq2 2672 . . . . . . . . . . . 12 (𝐵 = {𝑣} → (𝑣𝐵𝑣 ∈ {𝑣}))
1917, 18mpbiri 246 . . . . . . . . . . 11 (𝐵 = {𝑣} → 𝑣𝐵)
20 preq2 4208 . . . . . . . . . . . . . 14 (𝑢 = 𝑣 → {𝑤, 𝑢} = {𝑤, 𝑣})
2120eleq1d 2667 . . . . . . . . . . . . 13 (𝑢 = 𝑣 → ({𝑤, 𝑢} ∈ 𝐸 ↔ {𝑤, 𝑣} ∈ 𝐸))
2221ralbidv 2964 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (∀𝑤𝐴 {𝑤, 𝑢} ∈ 𝐸 ↔ ∀𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸))
2322rspcv 3273 . . . . . . . . . . 11 (𝑣𝐵 → (∀𝑢𝐵𝑤𝐴 {𝑤, 𝑢} ∈ 𝐸 → ∀𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸))
2419, 23syl 17 . . . . . . . . . 10 (𝐵 = {𝑣} → (∀𝑢𝐵𝑤𝐴 {𝑤, 𝑢} ∈ 𝐸 → ∀𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸))
254eqeq1i 2610 . . . . . . . . . . . 12 (𝐵 = {𝑣} ↔ (𝑉𝐴) = {𝑣})
26 ssrab2 3645 . . . . . . . . . . . . . . 15 {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} ⊆ 𝑉
273, 26eqsstri 3593 . . . . . . . . . . . . . 14 𝐴𝑉
28 dfss4 3815 . . . . . . . . . . . . . . 15 (𝐴𝑉 ↔ (𝑉 ∖ (𝑉𝐴)) = 𝐴)
29 eqcom 2612 . . . . . . . . . . . . . . 15 ((𝑉 ∖ (𝑉𝐴)) = 𝐴𝐴 = (𝑉 ∖ (𝑉𝐴)))
3028, 29bitri 262 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 = (𝑉 ∖ (𝑉𝐴)))
3127, 30mpbi 218 . . . . . . . . . . . . 13 𝐴 = (𝑉 ∖ (𝑉𝐴))
32 difeq2 3679 . . . . . . . . . . . . 13 ((𝑉𝐴) = {𝑣} → (𝑉 ∖ (𝑉𝐴)) = (𝑉 ∖ {𝑣}))
3331, 32syl5eq 2651 . . . . . . . . . . . 12 ((𝑉𝐴) = {𝑣} → 𝐴 = (𝑉 ∖ {𝑣}))
3425, 33sylbi 205 . . . . . . . . . . 11 (𝐵 = {𝑣} → 𝐴 = (𝑉 ∖ {𝑣}))
35 prcom 4206 . . . . . . . . . . . . 13 {𝑤, 𝑣} = {𝑣, 𝑤}
3635eleq1i 2674 . . . . . . . . . . . 12 ({𝑤, 𝑣} ∈ 𝐸 ↔ {𝑣, 𝑤} ∈ 𝐸)
3736a1i 11 . . . . . . . . . . 11 (𝐵 = {𝑣} → ({𝑤, 𝑣} ∈ 𝐸 ↔ {𝑣, 𝑤} ∈ 𝐸))
3834, 37raleqbidv 3124 . . . . . . . . . 10 (𝐵 = {𝑣} → (∀𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
3924, 38sylibd 227 . . . . . . . . 9 (𝐵 = {𝑣} → (∀𝑢𝐵𝑤𝐴 {𝑤, 𝑢} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
4016, 39syl5bi 230 . . . . . . . 8 (𝐵 = {𝑣} → (∀𝑤𝐴𝑢𝐵 {𝑤, 𝑢} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
4115, 40syl5com 31 . . . . . . 7 (𝐺 ∈ FriendGraph → (𝐵 = {𝑣} → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
4241reximdv 2994 . . . . . 6 (𝐺 ∈ FriendGraph → (∃𝑣𝑉 𝐵 = {𝑣} → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
4313, 42syl5com 31 . . . . 5 (∃𝑣𝐵 𝐵 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
449, 43sylbi 205 . . . 4 (∃𝑣 𝐵 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
4544com12 32 . . 3 (𝐺 ∈ FriendGraph → (∃𝑣 𝐵 = {𝑣} → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
468, 45syl5bi 230 . 2 (𝐺 ∈ FriendGraph → ((#‘𝐵) = 1 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
4746imp 443 1 ((𝐺 ∈ FriendGraph ∧ (#‘𝐵) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wex 1694  wcel 1975  wral 2891  wrex 2892  {crab 2895  Vcvv 3168  cdif 3532  wss 3535  {csn 4120  {cpr 4122  cfv 5786  1c1 9789  #chash 12930  Vtxcvtx 40227  Edgcedga 40349  VtxDegcvtxdg 40679   FriendGraph cfrgr 41426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-2o 7421  df-oadd 7424  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-card 8621  df-cda 8846  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-2 10922  df-n0 11136  df-z 11207  df-uz 11516  df-xadd 11775  df-fz 12149  df-hash 12931  df-xnn0 40196  df-uhgr 40278  df-ushgr 40279  df-upgr 40306  df-umgr 40307  df-edga 40350  df-uspgr 40378  df-usgr 40379  df-nbgr 40552  df-vtxdg 40680  df-frgr 41427
This theorem is referenced by:  frgrregorufr0  41487
  Copyright terms: Public domain W3C validator