![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmbas3 | Structured version Visualization version GIF version |
Description: An element of the base set of a finite free module with a Cartesian product as index set as operation value. (Contributed by AV, 14-Feb-2019.) |
Ref | Expression |
---|---|
frlmbas3.f | ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀)) |
frlmbas3.b | ⊢ 𝐵 = (Base‘𝑅) |
frlmbas3.v | ⊢ 𝑉 = (Base‘𝐹) |
Ref | Expression |
---|---|
frlmbas3 | ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → (𝐼𝑋𝐽) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmbas3.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝐹) | |
2 | 1 | eleq2i 2722 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 ↔ 𝑋 ∈ (Base‘𝐹)) |
3 | 2 | biimpi 206 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ (Base‘𝐹)) |
4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (Base‘𝐹)) |
5 | 4 | 3ad2ant1 1102 | . . . 4 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → 𝑋 ∈ (Base‘𝐹)) |
6 | simpl 472 | . . . . . . 7 ⊢ ((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) → 𝑅 ∈ 𝑊) | |
7 | xpfi 8272 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑁 × 𝑀) ∈ Fin) | |
8 | 6, 7 | anim12i 589 | . . . . . 6 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin)) → (𝑅 ∈ 𝑊 ∧ (𝑁 × 𝑀) ∈ Fin)) |
9 | 8 | 3adant3 1101 | . . . . 5 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → (𝑅 ∈ 𝑊 ∧ (𝑁 × 𝑀) ∈ Fin)) |
10 | frlmbas3.f | . . . . . 6 ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀)) | |
11 | frlmbas3.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
12 | 10, 11 | frlmfibas 20153 | . . . . 5 ⊢ ((𝑅 ∈ 𝑊 ∧ (𝑁 × 𝑀) ∈ Fin) → (𝐵 ↑𝑚 (𝑁 × 𝑀)) = (Base‘𝐹)) |
13 | 9, 12 | syl 17 | . . . 4 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → (𝐵 ↑𝑚 (𝑁 × 𝑀)) = (Base‘𝐹)) |
14 | 5, 13 | eleqtrrd 2733 | . . 3 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → 𝑋 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑀))) |
15 | elmapi 7921 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑀)) → 𝑋:(𝑁 × 𝑀)⟶𝐵) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → 𝑋:(𝑁 × 𝑀)⟶𝐵) |
17 | simp3l 1109 | . 2 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → 𝐼 ∈ 𝑁) | |
18 | simp3r 1110 | . 2 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → 𝐽 ∈ 𝑀) | |
19 | 16, 17, 18 | fovrnd 6848 | 1 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → (𝐼𝑋𝐽) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 × cxp 5141 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 Fincfn 7997 Basecbs 15904 freeLMod cfrlm 20138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-hom 16013 df-cco 16014 df-0g 16149 df-prds 16155 df-pws 16157 df-sra 19220 df-rgmod 19221 df-dsmm 20124 df-frlm 20139 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |