MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppss Structured version   Visualization version   GIF version

Theorem suppss 7271
Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppss.f (𝜑𝐹:𝐴𝐵)
suppss.n ((𝜑𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
Assertion
Ref Expression
suppss (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem suppss
StepHypRef Expression
1 suppss.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
2 ffn 6004 . . . . . . . 8 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 17 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
43adantl 482 . . . . . 6 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐹 Fn 𝐴)
5 fdm 6010 . . . . . . . 8 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
6 dmexg 7045 . . . . . . . . . 10 (𝐹 ∈ V → dom 𝐹 ∈ V)
76adantr 481 . . . . . . . . 9 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → dom 𝐹 ∈ V)
8 eleq1 2692 . . . . . . . . . 10 (𝐴 = dom 𝐹 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V))
98eqcoms 2634 . . . . . . . . 9 (dom 𝐹 = 𝐴 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V))
107, 9syl5ibr 236 . . . . . . . 8 (dom 𝐹 = 𝐴 → ((𝐹 ∈ V ∧ 𝑍 ∈ V) → 𝐴 ∈ V))
111, 5, 103syl 18 . . . . . . 7 (𝜑 → ((𝐹 ∈ V ∧ 𝑍 ∈ V) → 𝐴 ∈ V))
1211impcom 446 . . . . . 6 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐴 ∈ V)
13 simplr 791 . . . . . 6 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V)
14 elsuppfn 7249 . . . . . 6 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 𝑍 ∈ V) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
154, 12, 13, 14syl3anc 1323 . . . . 5 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
16 eldif 3570 . . . . . . . . 9 (𝑘 ∈ (𝐴𝑊) ↔ (𝑘𝐴 ∧ ¬ 𝑘𝑊))
17 suppss.n . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
1817adantll 749 . . . . . . . . 9 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
1916, 18sylan2br 493 . . . . . . . 8 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ (𝑘𝐴 ∧ ¬ 𝑘𝑊)) → (𝐹𝑘) = 𝑍)
2019expr 642 . . . . . . 7 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘𝐴) → (¬ 𝑘𝑊 → (𝐹𝑘) = 𝑍))
2120necon1ad 2813 . . . . . 6 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘𝐴) → ((𝐹𝑘) ≠ 𝑍𝑘𝑊))
2221expimpd 628 . . . . 5 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) → 𝑘𝑊))
2315, 22sylbid 230 . . . 4 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) → 𝑘𝑊))
2423ssrdv 3594 . . 3 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) ⊆ 𝑊)
2524ex 450 . 2 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊))
26 supp0prc 7244 . . . 4 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅)
27 0ss 3949 . . . 4 ∅ ⊆ 𝑊
2826, 27syl6eqss 3639 . . 3 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ 𝑊)
2928a1d 25 . 2 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊))
3025, 29pm2.61i 176 1 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wne 2796  Vcvv 3191  cdif 3557  wss 3560  c0 3896  dom cdm 5079   Fn wfn 5845  wf 5846  cfv 5850  (class class class)co 6605   supp csupp 7241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-supp 7242
This theorem is referenced by:  fsuppco2  8253  fsuppcor  8254  cantnfp1lem1  8520  cantnfp1lem3  8522  gsumzaddlem  18237  gsumzmhm  18253  gsum2d2lem  18288  lcomfsupp  18819  psrbaglesupp  19282  mplsubglem  19348  mpllsslem  19349  mplsubrglem  19353  mvrcl  19363  evlslem3  19428  frlmssuvc1  20047  frlmsslsp  20049  frlmup2  20052  deg1mul3le  23775  jensen  24610  resf1o  29339
  Copyright terms: Public domain W3C validator