MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullestrcsetc Structured version   Visualization version   GIF version

Theorem fullestrcsetc 16719
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is full. (Contributed by AV, 2-Apr-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))))
Assertion
Ref Expression
fullestrcsetc (𝜑𝐹(𝐸 Full 𝑆)𝐺)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fullestrcsetc
Dummy variables 𝑎 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcestrcsetc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . 3 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . 3 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . 3 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . 3 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))))
81, 2, 3, 4, 5, 6, 7funcestrcsetc 16717 . 2 (𝜑𝐹(𝐸 Func 𝑆)𝐺)
91, 2, 3, 4, 5, 6, 7funcestrcsetclem8 16715 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
105adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑈 ∈ WUni)
11 eqid 2621 . . . . . . . 8 (Hom ‘𝑆) = (Hom ‘𝑆)
121, 2, 3, 4, 5, 6funcestrcsetclem2 16709 . . . . . . . . 9 ((𝜑𝑎𝐵) → (𝐹𝑎) ∈ 𝑈)
1312adantrr 752 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑎) ∈ 𝑈)
141, 2, 3, 4, 5, 6funcestrcsetclem2 16709 . . . . . . . . 9 ((𝜑𝑏𝐵) → (𝐹𝑏) ∈ 𝑈)
1514adantrl 751 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑏) ∈ 𝑈)
162, 10, 11, 13, 15elsetchom 16659 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ ((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ↔ :(𝐹𝑎)⟶(𝐹𝑏)))
171, 2, 3, 4, 5, 6funcestrcsetclem1 16708 . . . . . . . . 9 ((𝜑𝑎𝐵) → (𝐹𝑎) = (Base‘𝑎))
1817adantrr 752 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑎) = (Base‘𝑎))
191, 2, 3, 4, 5, 6funcestrcsetclem1 16708 . . . . . . . . 9 ((𝜑𝑏𝐵) → (𝐹𝑏) = (Base‘𝑏))
2019adantrl 751 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑏) = (Base‘𝑏))
2118, 20feq23d 6002 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (:(𝐹𝑎)⟶(𝐹𝑏) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
2216, 21bitrd 268 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ ((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
23 fvex 6163 . . . . . . . . . . . . 13 (Base‘𝑏) ∈ V
24 fvex 6163 . . . . . . . . . . . . 13 (Base‘𝑎) ∈ V
2523, 24pm3.2i 471 . . . . . . . . . . . 12 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
26 elmapg 7822 . . . . . . . . . . . 12 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → ( ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
2725, 26mp1i 13 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
2827biimpar 502 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
29 equequ2 1950 . . . . . . . . . . 11 (𝑘 = → ( = 𝑘 = ))
3029adantl 482 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) ∧ 𝑘 = ) → ( = 𝑘 = ))
31 eqidd 2622 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → = )
3228, 30, 31rspcedvd 3305 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∃𝑘 ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) = 𝑘)
33 eqid 2621 . . . . . . . . . . . . . 14 (Base‘𝑎) = (Base‘𝑎)
34 eqid 2621 . . . . . . . . . . . . . 14 (Base‘𝑏) = (Base‘𝑏)
351, 2, 3, 4, 5, 6, 7, 33, 34funcestrcsetclem6 16713 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑘 ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
36353expa 1262 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
3736eqeq2d 2631 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))) → ( = ((𝑎𝐺𝑏)‘𝑘) ↔ = 𝑘))
3837rexbidva 3043 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (∃𝑘 ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) = 𝑘))
3938adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → (∃𝑘 ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) = 𝑘))
4032, 39mpbird 247 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∃𝑘 ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) = ((𝑎𝐺𝑏)‘𝑘))
41 eqid 2621 . . . . . . . . . . 11 (Hom ‘𝐸) = (Hom ‘𝐸)
421, 5estrcbas 16693 . . . . . . . . . . . . . . . 16 (𝜑𝑈 = (Base‘𝐸))
4342, 3syl6reqr 2674 . . . . . . . . . . . . . . 15 (𝜑𝐵 = 𝑈)
4443eleq2d 2684 . . . . . . . . . . . . . 14 (𝜑 → (𝑎𝐵𝑎𝑈))
4544biimpcd 239 . . . . . . . . . . . . 13 (𝑎𝐵 → (𝜑𝑎𝑈))
4645adantr 481 . . . . . . . . . . . 12 ((𝑎𝐵𝑏𝐵) → (𝜑𝑎𝑈))
4746impcom 446 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝑈)
4843eleq2d 2684 . . . . . . . . . . . . . 14 (𝜑 → (𝑏𝐵𝑏𝑈))
4948biimpcd 239 . . . . . . . . . . . . 13 (𝑏𝐵 → (𝜑𝑏𝑈))
5049adantl 482 . . . . . . . . . . . 12 ((𝑎𝐵𝑏𝐵) → (𝜑𝑏𝑈))
5150impcom 446 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝑈)
521, 10, 41, 47, 51, 33, 34estrchom 16695 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(Hom ‘𝐸)𝑏) = ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
5352rexeqdv 3137 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) = ((𝑎𝐺𝑏)‘𝑘)))
5453adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → (∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) = ((𝑎𝐺𝑏)‘𝑘)))
5540, 54mpbird 247 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘))
5655ex 450 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (:(Base‘𝑎)⟶(Base‘𝑏) → ∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
5722, 56sylbid 230 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ ((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) → ∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
5857ralrimiv 2960 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ∀ ∈ ((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏))∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘))
59 dffo3 6335 . . . 4 ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–onto→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ↔ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ∧ ∀ ∈ ((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏))∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
609, 58, 59sylanbrc 697 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–onto→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
6160ralrimivva 2966 . 2 (𝜑 → ∀𝑎𝐵𝑏𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–onto→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
623, 11, 41isfull2 16499 . 2 (𝐹(𝐸 Full 𝑆)𝐺 ↔ (𝐹(𝐸 Func 𝑆)𝐺 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–onto→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏))))
638, 61, 62sylanbrc 697 1 (𝜑𝐹(𝐸 Full 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  Vcvv 3189   class class class wbr 4618  cmpt 4678   I cid 4989  cres 5081  wf 5848  ontowfo 5850  cfv 5852  (class class class)co 6610  cmpt2 6612  𝑚 cmap 7809  WUnicwun 9473  Basecbs 15788  Hom chom 15880   Func cfunc 16442   Full cful 16490  SetCatcsetc 16653  ExtStrCatcestrc 16690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-wun 9475  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-fz 12276  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-hom 15894  df-cco 15895  df-cat 16257  df-cid 16258  df-func 16446  df-full 16492  df-setc 16654  df-estrc 16691
This theorem is referenced by:  equivestrcsetc  16720
  Copyright terms: Public domain W3C validator