MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetc Structured version   Visualization version   GIF version

Theorem funcestrcsetc 17394
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set, preserving the morphisms as mappings between the corresponding base sets. (Contributed by AV, 23-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
funcestrcsetc (𝜑𝐹(𝐸 Func 𝑆)𝐺)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcestrcsetc
Dummy variables 𝑎 𝑏 𝑐 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcestrcsetc.b . 2 𝐵 = (Base‘𝐸)
2 funcestrcsetc.c . 2 𝐶 = (Base‘𝑆)
3 eqid 2820 . 2 (Hom ‘𝐸) = (Hom ‘𝐸)
4 eqid 2820 . 2 (Hom ‘𝑆) = (Hom ‘𝑆)
5 eqid 2820 . 2 (Id‘𝐸) = (Id‘𝐸)
6 eqid 2820 . 2 (Id‘𝑆) = (Id‘𝑆)
7 eqid 2820 . 2 (comp‘𝐸) = (comp‘𝐸)
8 eqid 2820 . 2 (comp‘𝑆) = (comp‘𝑆)
9 funcestrcsetc.u . . 3 (𝜑𝑈 ∈ WUni)
10 funcestrcsetc.e . . . 4 𝐸 = (ExtStrCat‘𝑈)
1110estrccat 17378 . . 3 (𝑈 ∈ WUni → 𝐸 ∈ Cat)
129, 11syl 17 . 2 (𝜑𝐸 ∈ Cat)
13 funcestrcsetc.s . . . 4 𝑆 = (SetCat‘𝑈)
1413setccat 17340 . . 3 (𝑈 ∈ WUni → 𝑆 ∈ Cat)
159, 14syl 17 . 2 (𝜑𝑆 ∈ Cat)
16 funcestrcsetc.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
1710, 13, 1, 2, 9, 16funcestrcsetclem3 17387 . 2 (𝜑𝐹:𝐵𝐶)
18 funcestrcsetc.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
1910, 13, 1, 2, 9, 16, 18funcestrcsetclem4 17388 . 2 (𝜑𝐺 Fn (𝐵 × 𝐵))
2010, 13, 1, 2, 9, 16, 18funcestrcsetclem8 17392 . 2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
2110, 13, 1, 2, 9, 16, 18funcestrcsetclem7 17391 . 2 ((𝜑𝑎𝐵) → ((𝑎𝐺𝑎)‘((Id‘𝐸)‘𝑎)) = ((Id‘𝑆)‘(𝐹𝑎)))
2210, 13, 1, 2, 9, 16, 18funcestrcsetclem9 17393 . 2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑏(Hom ‘𝐸)𝑐))) → ((𝑎𝐺𝑐)‘(𝑘(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐))) = (((𝑏𝐺𝑐)‘𝑘)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝑆)(𝐹𝑐))((𝑎𝐺𝑏)‘)))
231, 2, 3, 4, 5, 6, 7, 8, 12, 15, 17, 19, 20, 21, 22isfuncd 17130 1 (𝜑𝐹(𝐸 Func 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113   class class class wbr 5059  cmpt 5139   I cid 5452  cres 5550  cfv 6348  (class class class)co 7149  cmpo 7151  m cmap 8399  WUnicwun 10115  Basecbs 16478  Hom chom 16571  compcco 16572  Catccat 16930  Idccid 16931   Func cfunc 17119  SetCatcsetc 17330  ExtStrCatcestrc 17367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-ixp 8455  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-wun 10117  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-hom 16584  df-cco 16585  df-cat 16934  df-cid 16935  df-func 17123  df-setc 17331  df-estrc 17368
This theorem is referenced by:  fthestrcsetc  17395  fullestrcsetc  17396  funcrngcsetc  44343  funcrngcsetcALT  44344  funcringcsetc  44380
  Copyright terms: Public domain W3C validator