HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  polidi Structured version   Visualization version   GIF version

Theorem polidi 28929
Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of axiom ax-his3 28855. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
polid.1 𝐴 ∈ ℋ
polid.2 𝐵 ∈ ℋ
Assertion
Ref Expression
polidi (𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4)

Proof of Theorem polidi
StepHypRef Expression
1 polid.1 . . 3 𝐴 ∈ ℋ
2 polid.2 . . 3 𝐵 ∈ ℋ
31, 2, 2, 1polid2i 28928 . 2 (𝐴 ·ih 𝐵) = (((((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) − ((𝐴 𝐵) ·ih (𝐴 𝐵))) + (i · (((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵))) − ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵)))))) / 4)
41, 2hvaddcli 28789 . . . . . 6 (𝐴 + 𝐵) ∈ ℋ
54normsqi 28903 . . . . 5 ((norm‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))
61, 2hvsubcli 28792 . . . . . 6 (𝐴 𝐵) ∈ ℋ
76normsqi 28903 . . . . 5 ((norm‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) ·ih (𝐴 𝐵))
85, 7oveq12i 7162 . . . 4 (((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) = (((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) − ((𝐴 𝐵) ·ih (𝐴 𝐵)))
9 ax-icn 10590 . . . . . . . . 9 i ∈ ℂ
109, 2hvmulcli 28785 . . . . . . . 8 (i · 𝐵) ∈ ℋ
111, 10hvaddcli 28789 . . . . . . 7 (𝐴 + (i · 𝐵)) ∈ ℋ
1211normsqi 28903 . . . . . 6 ((norm‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵)))
131, 10hvsubcli 28792 . . . . . . 7 (𝐴 (i · 𝐵)) ∈ ℋ
1413normsqi 28903 . . . . . 6 ((norm‘(𝐴 (i · 𝐵)))↑2) = ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵)))
1512, 14oveq12i 7162 . . . . 5 (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)) = (((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵))) − ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵))))
1615oveq2i 7161 . . . 4 (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2))) = (i · (((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵))) − ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵)))))
178, 16oveq12i 7162 . . 3 ((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) = ((((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) − ((𝐴 𝐵) ·ih (𝐴 𝐵))) + (i · (((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵))) − ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵))))))
1817oveq1i 7160 . 2 (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4) = (((((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) − ((𝐴 𝐵) ·ih (𝐴 𝐵))) + (i · (((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵))) − ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵)))))) / 4)
193, 18eqtr4i 2847 1 (𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2110  cfv 6349  (class class class)co 7150  ici 10533   + caddc 10534   · cmul 10536  cmin 10864   / cdiv 11291  2c2 11686  4c4 11688  cexp 13423  chba 28690   + cva 28691   · csm 28692   ·ih csp 28693  normcno 28694   cmv 28696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-hfvadd 28771  ax-hv0cl 28774  ax-hfvmul 28776  ax-hvmul0 28781  ax-hfi 28850  ax-his1 28853  ax-his2 28854  ax-his3 28855  ax-his4 28856
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-hnorm 28739  df-hvsub 28742
This theorem is referenced by:  polid  28930
  Copyright terms: Public domain W3C validator