HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  polidi Structured version   Visualization version   GIF version

Theorem polidi 27861
Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of axiom ax-his3 27787. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
polid.1 𝐴 ∈ ℋ
polid.2 𝐵 ∈ ℋ
Assertion
Ref Expression
polidi (𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4)

Proof of Theorem polidi
StepHypRef Expression
1 polid.1 . . 3 𝐴 ∈ ℋ
2 polid.2 . . 3 𝐵 ∈ ℋ
31, 2, 2, 1polid2i 27860 . 2 (𝐴 ·ih 𝐵) = (((((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) − ((𝐴 𝐵) ·ih (𝐴 𝐵))) + (i · (((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵))) − ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵)))))) / 4)
41, 2hvaddcli 27721 . . . . . 6 (𝐴 + 𝐵) ∈ ℋ
54normsqi 27835 . . . . 5 ((norm‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))
61, 2hvsubcli 27724 . . . . . 6 (𝐴 𝐵) ∈ ℋ
76normsqi 27835 . . . . 5 ((norm‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) ·ih (𝐴 𝐵))
85, 7oveq12i 6616 . . . 4 (((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) = (((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) − ((𝐴 𝐵) ·ih (𝐴 𝐵)))
9 ax-icn 9939 . . . . . . . . 9 i ∈ ℂ
109, 2hvmulcli 27717 . . . . . . . 8 (i · 𝐵) ∈ ℋ
111, 10hvaddcli 27721 . . . . . . 7 (𝐴 + (i · 𝐵)) ∈ ℋ
1211normsqi 27835 . . . . . 6 ((norm‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵)))
131, 10hvsubcli 27724 . . . . . . 7 (𝐴 (i · 𝐵)) ∈ ℋ
1413normsqi 27835 . . . . . 6 ((norm‘(𝐴 (i · 𝐵)))↑2) = ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵)))
1512, 14oveq12i 6616 . . . . 5 (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)) = (((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵))) − ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵))))
1615oveq2i 6615 . . . 4 (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2))) = (i · (((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵))) − ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵)))))
178, 16oveq12i 6616 . . 3 ((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) = ((((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) − ((𝐴 𝐵) ·ih (𝐴 𝐵))) + (i · (((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵))) − ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵))))))
1817oveq1i 6614 . 2 (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4) = (((((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) − ((𝐴 𝐵) ·ih (𝐴 𝐵))) + (i · (((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵))) − ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵)))))) / 4)
193, 18eqtr4i 2646 1 (𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987  cfv 5847  (class class class)co 6604  ici 9882   + caddc 9883   · cmul 9885  cmin 10210   / cdiv 10628  2c2 11014  4c4 11016  cexp 12800  chil 27622   + cva 27623   · csm 27624   ·ih csp 27625  normcno 27626   cmv 27628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-hfvadd 27703  ax-hv0cl 27706  ax-hfvmul 27708  ax-hvmul0 27713  ax-hfi 27782  ax-his1 27785  ax-his2 27786  ax-his3 27787  ax-his4 27788
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-hnorm 27671  df-hvsub 27674
This theorem is referenced by:  polid  27862
  Copyright terms: Public domain W3C validator