MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds2 Structured version   Visualization version   GIF version

Theorem islinds2 20071
Description: Expanded property of an independent set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
islindf.b 𝐵 = (Base‘𝑊)
islindf.v · = ( ·𝑠𝑊)
islindf.k 𝐾 = (LSpan‘𝑊)
islindf.s 𝑆 = (Scalar‘𝑊)
islindf.n 𝑁 = (Base‘𝑆)
islindf.z 0 = (0g𝑆)
Assertion
Ref Expression
islinds2 (𝑊𝑌 → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑁   𝑘,𝑊,𝑥   0 ,𝑘
Allowed substitution hints:   𝐵(𝑥,𝑘)   𝑆(𝑥,𝑘)   · (𝑥,𝑘)   𝐾(𝑥,𝑘)   𝑁(𝑥)   𝑌(𝑥,𝑘)   0 (𝑥)

Proof of Theorem islinds2
StepHypRef Expression
1 islindf.b . . 3 𝐵 = (Base‘𝑊)
21islinds 20067 . 2 (𝑊𝑌 → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑊)))
3 fvex 6158 . . . . . . . 8 (Base‘𝑊) ∈ V
41, 3eqeltri 2694 . . . . . . 7 𝐵 ∈ V
54ssex 4762 . . . . . 6 (𝐹𝐵𝐹 ∈ V)
65adantl 482 . . . . 5 ((𝑊𝑌𝐹𝐵) → 𝐹 ∈ V)
7 resiexg 7049 . . . . 5 (𝐹 ∈ V → ( I ↾ 𝐹) ∈ V)
86, 7syl 17 . . . 4 ((𝑊𝑌𝐹𝐵) → ( I ↾ 𝐹) ∈ V)
9 islindf.v . . . . 5 · = ( ·𝑠𝑊)
10 islindf.k . . . . 5 𝐾 = (LSpan‘𝑊)
11 islindf.s . . . . 5 𝑆 = (Scalar‘𝑊)
12 islindf.n . . . . 5 𝑁 = (Base‘𝑆)
13 islindf.z . . . . 5 0 = (0g𝑆)
141, 9, 10, 11, 12, 13islindf 20070 . . . 4 ((𝑊𝑌 ∧ ( I ↾ 𝐹) ∈ V) → (( I ↾ 𝐹) LIndF 𝑊 ↔ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))))
158, 14syldan 487 . . 3 ((𝑊𝑌𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑊 ↔ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))))
1615pm5.32da 672 . 2 (𝑊𝑌 → ((𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑊) ↔ (𝐹𝐵 ∧ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})))))))
17 f1oi 6131 . . . . . . . . 9 ( I ↾ 𝐹):𝐹1-1-onto𝐹
18 f1of 6094 . . . . . . . . 9 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹𝐹)
1917, 18ax-mp 5 . . . . . . . 8 ( I ↾ 𝐹):𝐹𝐹
20 dmresi 5416 . . . . . . . . 9 dom ( I ↾ 𝐹) = 𝐹
2120feq2i 5994 . . . . . . . 8 (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹 ↔ ( I ↾ 𝐹):𝐹𝐹)
2219, 21mpbir 221 . . . . . . 7 ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹
23 fss 6013 . . . . . . 7 ((( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹𝐹𝐵) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵)
2422, 23mpan 705 . . . . . 6 (𝐹𝐵 → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵)
2524biantrurd 529 . . . . 5 (𝐹𝐵 → (∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})) ↔ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))))
2620raleqi 3131 . . . . . . 7 (∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))
27 fvresi 6393 . . . . . . . . . . . 12 (𝑥𝐹 → (( I ↾ 𝐹)‘𝑥) = 𝑥)
2827oveq2d 6620 . . . . . . . . . . 11 (𝑥𝐹 → (𝑘 · (( I ↾ 𝐹)‘𝑥)) = (𝑘 · 𝑥))
2920difeq1i 3702 . . . . . . . . . . . . . . 15 (dom ( I ↾ 𝐹) ∖ {𝑥}) = (𝐹 ∖ {𝑥})
3029imaeq2i 5423 . . . . . . . . . . . . . 14 (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})) = (( I ↾ 𝐹) “ (𝐹 ∖ {𝑥}))
31 difss 3715 . . . . . . . . . . . . . . 15 (𝐹 ∖ {𝑥}) ⊆ 𝐹
32 resiima 5439 . . . . . . . . . . . . . . 15 ((𝐹 ∖ {𝑥}) ⊆ 𝐹 → (( I ↾ 𝐹) “ (𝐹 ∖ {𝑥})) = (𝐹 ∖ {𝑥}))
3331, 32ax-mp 5 . . . . . . . . . . . . . 14 (( I ↾ 𝐹) “ (𝐹 ∖ {𝑥})) = (𝐹 ∖ {𝑥})
3430, 33eqtri 2643 . . . . . . . . . . . . 13 (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})) = (𝐹 ∖ {𝑥})
3534fveq2i 6151 . . . . . . . . . . . 12 (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) = (𝐾‘(𝐹 ∖ {𝑥}))
3635a1i 11 . . . . . . . . . . 11 (𝑥𝐹 → (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) = (𝐾‘(𝐹 ∖ {𝑥})))
3728, 36eleq12d 2692 . . . . . . . . . 10 (𝑥𝐹 → ((𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
3837notbid 308 . . . . . . . . 9 (𝑥𝐹 → (¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
3938ralbidv 2980 . . . . . . . 8 (𝑥𝐹 → (∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
4039ralbiia 2973 . . . . . . 7 (∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))
4126, 40bitri 264 . . . . . 6 (∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))
4241anbi2i 729 . . . . 5 ((( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})))) ↔ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
4325, 42syl6rbbr 279 . . . 4 (𝐹𝐵 → ((( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})))) ↔ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
4443pm5.32i 668 . . 3 ((𝐹𝐵 ∧ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))) ↔ (𝐹𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
4544a1i 11 . 2 (𝑊𝑌 → ((𝐹𝐵 ∧ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))) ↔ (𝐹𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))))
462, 16, 453bitrd 294 1 (𝑊𝑌 → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  cdif 3552  wss 3555  {csn 4148   class class class wbr 4613   I cid 4984  dom cdm 5074  cres 5076  cima 5077  wf 5843  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  Basecbs 15781  Scalarcsca 15865   ·𝑠 cvsca 15866  0gc0g 16021  LSpanclspn 18890   LIndF clindf 20062  LIndSclinds 20063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-lindf 20064  df-linds 20065
This theorem is referenced by:  lindsind  20075  lindfrn  20079  islbs4  20090  lindsenlbs  33036  lindslininds  41541
  Copyright terms: Public domain W3C validator