MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds2 Structured version   Visualization version   GIF version

Theorem islinds2 20957
Description: Expanded property of an independent set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
islindf.b 𝐵 = (Base‘𝑊)
islindf.v · = ( ·𝑠𝑊)
islindf.k 𝐾 = (LSpan‘𝑊)
islindf.s 𝑆 = (Scalar‘𝑊)
islindf.n 𝑁 = (Base‘𝑆)
islindf.z 0 = (0g𝑆)
Assertion
Ref Expression
islinds2 (𝑊𝑌 → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑁   𝑘,𝑊,𝑥   0 ,𝑘
Allowed substitution hints:   𝐵(𝑥,𝑘)   𝑆(𝑥,𝑘)   · (𝑥,𝑘)   𝐾(𝑥,𝑘)   𝑁(𝑥)   𝑌(𝑥,𝑘)   0 (𝑥)

Proof of Theorem islinds2
StepHypRef Expression
1 islindf.b . . 3 𝐵 = (Base‘𝑊)
21islinds 20953 . 2 (𝑊𝑌 → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑊)))
31fvexi 6684 . . . . . . 7 𝐵 ∈ V
43ssex 5225 . . . . . 6 (𝐹𝐵𝐹 ∈ V)
54adantl 484 . . . . 5 ((𝑊𝑌𝐹𝐵) → 𝐹 ∈ V)
6 resiexg 7619 . . . . 5 (𝐹 ∈ V → ( I ↾ 𝐹) ∈ V)
75, 6syl 17 . . . 4 ((𝑊𝑌𝐹𝐵) → ( I ↾ 𝐹) ∈ V)
8 islindf.v . . . . 5 · = ( ·𝑠𝑊)
9 islindf.k . . . . 5 𝐾 = (LSpan‘𝑊)
10 islindf.s . . . . 5 𝑆 = (Scalar‘𝑊)
11 islindf.n . . . . 5 𝑁 = (Base‘𝑆)
12 islindf.z . . . . 5 0 = (0g𝑆)
131, 8, 9, 10, 11, 12islindf 20956 . . . 4 ((𝑊𝑌 ∧ ( I ↾ 𝐹) ∈ V) → (( I ↾ 𝐹) LIndF 𝑊 ↔ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))))
147, 13syldan 593 . . 3 ((𝑊𝑌𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑊 ↔ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))))
1514pm5.32da 581 . 2 (𝑊𝑌 → ((𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑊) ↔ (𝐹𝐵 ∧ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})))))))
16 f1oi 6652 . . . . . . . . 9 ( I ↾ 𝐹):𝐹1-1-onto𝐹
17 f1of 6615 . . . . . . . . 9 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹𝐹)
1816, 17ax-mp 5 . . . . . . . 8 ( I ↾ 𝐹):𝐹𝐹
19 dmresi 5921 . . . . . . . . 9 dom ( I ↾ 𝐹) = 𝐹
2019feq2i 6506 . . . . . . . 8 (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹 ↔ ( I ↾ 𝐹):𝐹𝐹)
2118, 20mpbir 233 . . . . . . 7 ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹
22 fss 6527 . . . . . . 7 ((( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹𝐹𝐵) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵)
2321, 22mpan 688 . . . . . 6 (𝐹𝐵 → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵)
2423biantrurd 535 . . . . 5 (𝐹𝐵 → (∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})) ↔ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))))
2519raleqi 3413 . . . . . . 7 (∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))
26 fvresi 6935 . . . . . . . . . . . 12 (𝑥𝐹 → (( I ↾ 𝐹)‘𝑥) = 𝑥)
2726oveq2d 7172 . . . . . . . . . . 11 (𝑥𝐹 → (𝑘 · (( I ↾ 𝐹)‘𝑥)) = (𝑘 · 𝑥))
2819difeq1i 4095 . . . . . . . . . . . . . . 15 (dom ( I ↾ 𝐹) ∖ {𝑥}) = (𝐹 ∖ {𝑥})
2928imaeq2i 5927 . . . . . . . . . . . . . 14 (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})) = (( I ↾ 𝐹) “ (𝐹 ∖ {𝑥}))
30 difss 4108 . . . . . . . . . . . . . . 15 (𝐹 ∖ {𝑥}) ⊆ 𝐹
31 resiima 5944 . . . . . . . . . . . . . . 15 ((𝐹 ∖ {𝑥}) ⊆ 𝐹 → (( I ↾ 𝐹) “ (𝐹 ∖ {𝑥})) = (𝐹 ∖ {𝑥}))
3230, 31ax-mp 5 . . . . . . . . . . . . . 14 (( I ↾ 𝐹) “ (𝐹 ∖ {𝑥})) = (𝐹 ∖ {𝑥})
3329, 32eqtri 2844 . . . . . . . . . . . . 13 (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})) = (𝐹 ∖ {𝑥})
3433fveq2i 6673 . . . . . . . . . . . 12 (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) = (𝐾‘(𝐹 ∖ {𝑥}))
3534a1i 11 . . . . . . . . . . 11 (𝑥𝐹 → (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) = (𝐾‘(𝐹 ∖ {𝑥})))
3627, 35eleq12d 2907 . . . . . . . . . 10 (𝑥𝐹 → ((𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
3736notbid 320 . . . . . . . . 9 (𝑥𝐹 → (¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
3837ralbidv 3197 . . . . . . . 8 (𝑥𝐹 → (∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
3938ralbiia 3164 . . . . . . 7 (∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))
4025, 39bitri 277 . . . . . 6 (∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))
4140anbi2i 624 . . . . 5 ((( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})))) ↔ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
4224, 41syl6rbbr 292 . . . 4 (𝐹𝐵 → ((( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})))) ↔ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
4342pm5.32i 577 . . 3 ((𝐹𝐵 ∧ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))) ↔ (𝐹𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
4443a1i 11 . 2 (𝑊𝑌 → ((𝐹𝐵 ∧ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))) ↔ (𝐹𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))))
452, 15, 443bitrd 307 1 (𝑊𝑌 → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  cdif 3933  wss 3936  {csn 4567   class class class wbr 5066   I cid 5459  dom cdm 5555  cres 5557  cima 5558  wf 6351  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713  LSpanclspn 19743   LIndF clindf 20948  LIndSclinds 20949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-lindf 20950  df-linds 20951
This theorem is referenced by:  lindsind  20961  lindfrn  20965  islbs4  20976  0nellinds  30935  lindssn  30939  lindsunlem  31020  lindsun  31021  lindsadd  34900  lindsenlbs  34902  lindslininds  44539
  Copyright terms: Public domain W3C validator