Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindssn Structured version   Visualization version   GIF version

Theorem lindssn 30959
Description: Any singleton of a nonzero element is an independent set. (Contributed by Thierry Arnoux, 5-Aug-2023.)
Hypotheses
Ref Expression
lindssn.1 𝐵 = (Base‘𝑊)
lindssn.2 0 = (0g𝑊)
Assertion
Ref Expression
lindssn ((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) → {𝑋} ∈ (LIndS‘𝑊))

Proof of Theorem lindssn
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1131 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) → 𝑊 ∈ LVec)
2 snssi 4734 . . 3 (𝑋𝐵 → {𝑋} ⊆ 𝐵)
323ad2ant2 1129 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) → {𝑋} ⊆ 𝐵)
4 simpr 487 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
5 eldifsni 4715 . . . . . . . . . 10 (𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑦 ≠ (0g‘(Scalar‘𝑊)))
64, 5syl 17 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → 𝑦 ≠ (0g‘(Scalar‘𝑊)))
76neneqd 3020 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ¬ 𝑦 = (0g‘(Scalar‘𝑊)))
8 simpl3 1188 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → 𝑋0 )
98neneqd 3020 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ¬ 𝑋 = 0 )
10 ioran 980 . . . . . . . 8 (¬ (𝑦 = (0g‘(Scalar‘𝑊)) ∨ 𝑋 = 0 ) ↔ (¬ 𝑦 = (0g‘(Scalar‘𝑊)) ∧ ¬ 𝑋 = 0 ))
117, 9, 10sylanbrc 585 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ¬ (𝑦 = (0g‘(Scalar‘𝑊)) ∨ 𝑋 = 0 ))
12 lindssn.1 . . . . . . . . 9 𝐵 = (Base‘𝑊)
13 eqid 2820 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
14 eqid 2820 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
15 eqid 2820 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
16 eqid 2820 . . . . . . . . 9 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
17 lindssn.2 . . . . . . . . 9 0 = (0g𝑊)
181adantr 483 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → 𝑊 ∈ LVec)
194eldifad 3941 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → 𝑦 ∈ (Base‘(Scalar‘𝑊)))
20 simpl2 1187 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → 𝑋𝐵)
2112, 13, 14, 15, 16, 17, 18, 19, 20lvecvs0or 19873 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑦( ·𝑠𝑊)𝑋) = 0 ↔ (𝑦 = (0g‘(Scalar‘𝑊)) ∨ 𝑋 = 0 )))
2221necon3abid 3051 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑦( ·𝑠𝑊)𝑋) ≠ 0 ↔ ¬ (𝑦 = (0g‘(Scalar‘𝑊)) ∨ 𝑋 = 0 )))
2311, 22mpbird 259 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (𝑦( ·𝑠𝑊)𝑋) ≠ 0 )
24 nelsn 4598 . . . . . 6 ((𝑦( ·𝑠𝑊)𝑋) ≠ 0 → ¬ (𝑦( ·𝑠𝑊)𝑋) ∈ { 0 })
2523, 24syl 17 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ¬ (𝑦( ·𝑠𝑊)𝑋) ∈ { 0 })
26 difid 4323 . . . . . . . 8 ({𝑋} ∖ {𝑋}) = ∅
2726a1i 11 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ({𝑋} ∖ {𝑋}) = ∅)
2827fveq2d 6667 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋})) = ((LSpan‘𝑊)‘∅))
29 lveclmod 19871 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
30 eqid 2820 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
3117, 30lsp0 19774 . . . . . . . 8 (𝑊 ∈ LMod → ((LSpan‘𝑊)‘∅) = { 0 })
321, 29, 313syl 18 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) → ((LSpan‘𝑊)‘∅) = { 0 })
3332adantr 483 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((LSpan‘𝑊)‘∅) = { 0 })
3428, 33eqtrd 2855 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋})) = { 0 })
3525, 34neleqtrrd 2934 . . . 4 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ¬ (𝑦( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋})))
3635ralrimiva 3181 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) → ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋})))
37 oveq2 7157 . . . . . . . 8 (𝑥 = 𝑋 → (𝑦( ·𝑠𝑊)𝑥) = (𝑦( ·𝑠𝑊)𝑋))
38 sneq 4570 . . . . . . . . . 10 (𝑥 = 𝑋 → {𝑥} = {𝑋})
3938difeq2d 4092 . . . . . . . . 9 (𝑥 = 𝑋 → ({𝑋} ∖ {𝑥}) = ({𝑋} ∖ {𝑋}))
4039fveq2d 6667 . . . . . . . 8 (𝑥 = 𝑋 → ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})) = ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋})))
4137, 40eleq12d 2906 . . . . . . 7 (𝑥 = 𝑋 → ((𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})) ↔ (𝑦( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋}))))
4241notbid 320 . . . . . 6 (𝑥 = 𝑋 → (¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})) ↔ ¬ (𝑦( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋}))))
4342ralbidv 3196 . . . . 5 (𝑥 = 𝑋 → (∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})) ↔ ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋}))))
4443ralsng 4606 . . . 4 (𝑋𝐵 → (∀𝑥 ∈ {𝑋}∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})) ↔ ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋}))))
45443ad2ant2 1129 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) → (∀𝑥 ∈ {𝑋}∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})) ↔ ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋}))))
4636, 45mpbird 259 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) → ∀𝑥 ∈ {𝑋}∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})))
4712, 13, 30, 14, 15, 16islinds2 20950 . . 3 (𝑊 ∈ LVec → ({𝑋} ∈ (LIndS‘𝑊) ↔ ({𝑋} ⊆ 𝐵 ∧ ∀𝑥 ∈ {𝑋}∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})))))
4847biimpar 480 . 2 ((𝑊 ∈ LVec ∧ ({𝑋} ⊆ 𝐵 ∧ ∀𝑥 ∈ {𝑋}∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})))) → {𝑋} ∈ (LIndS‘𝑊))
491, 3, 46, 48syl12anc 834 1 ((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) → {𝑋} ∈ (LIndS‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1082   = wceq 1536  wcel 2113  wne 3015  wral 3137  cdif 3926  wss 3929  c0 4284  {csn 4560  cfv 6348  (class class class)co 7149  Basecbs 16476  Scalarcsca 16561   ·𝑠 cvsca 16562  0gc0g 16706  LModclmod 19627  LSpanclspn 19736  LVecclvec 19867  LIndSclinds 20942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-tpos 7885  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-ress 16484  df-plusg 16571  df-mulr 16572  df-0g 16708  df-mgm 17845  df-sgrp 17894  df-mnd 17905  df-grp 18099  df-minusg 18100  df-sbg 18101  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19366  df-dvdsr 19384  df-unit 19385  df-invr 19415  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lindf 20943  df-linds 20944
This theorem is referenced by:  rgmoddim  31030  ccfldextdgrr  31079
  Copyright terms: Public domain W3C validator