Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsenlbs Structured version   Visualization version   GIF version

Theorem lindsenlbs 34902
Description: A maximal linearly independent set in a free module of finite dimension over a division ring is a basis. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
lindsenlbs (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → 𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼)))

Proof of Theorem lindsenlbs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1189 . 2 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))
2 drngring 19509 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
3 eqid 2821 . . . . . . . 8 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
43frlmlmod 20893 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
52, 4sylan 582 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
6 eqid 2821 . . . . . . 7 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
76linds1 20954 . . . . . 6 (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼)))
8 eqid 2821 . . . . . . 7 (LSpan‘(𝑅 freeLMod 𝐼)) = (LSpan‘(𝑅 freeLMod 𝐼))
96, 8lspssv 19755 . . . . . 6 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
105, 7, 9syl2an 597 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
11103impa 1106 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
1211adantr 483 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
13 bren2 8540 . . . . . . 7 (𝑋𝐼 ↔ (𝑋𝐼 ∧ ¬ 𝑋𝐼))
1413simprbi 499 . . . . . 6 (𝑋𝐼 → ¬ 𝑋𝐼)
15 snfi 8594 . . . . . . . . . . . 12 {𝑦} ∈ Fin
16 simp2 1133 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝐼 ∈ Fin)
17 lindsdom 34901 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋𝐼)
18 domfi 8739 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑋𝐼) → 𝑋 ∈ Fin)
1916, 17, 18syl2anc 586 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ∈ Fin)
20 unfi 8785 . . . . . . . . . . . 12 (({𝑦} ∈ Fin ∧ 𝑋 ∈ Fin) → ({𝑦} ∪ 𝑋) ∈ Fin)
2115, 19, 20sylancr 589 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ∈ Fin)
2221adantr 483 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ({𝑦} ∪ 𝑋) ∈ Fin)
23 vex 3497 . . . . . . . . . . . . . 14 𝑦 ∈ V
2423snss 4718 . . . . . . . . . . . . 13 (𝑦𝑋 ↔ {𝑦} ⊆ 𝑋)
256, 8lspssid 19757 . . . . . . . . . . . . . . . 16 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
265, 7, 25syl2an 597 . . . . . . . . . . . . . . 15 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
27263impa 1106 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
2827sseld 3966 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑦𝑋𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
2924, 28syl5bir 245 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ({𝑦} ⊆ 𝑋𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
3029con3dimp 411 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ {𝑦} ⊆ 𝑋)
31 nsspssun 4234 . . . . . . . . . . 11 (¬ {𝑦} ⊆ 𝑋𝑋 ⊊ ({𝑦} ∪ 𝑋))
3230, 31sylib 220 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → 𝑋 ⊊ ({𝑦} ∪ 𝑋))
33 php3 8703 . . . . . . . . . 10 ((({𝑦} ∪ 𝑋) ∈ Fin ∧ 𝑋 ⊊ ({𝑦} ∪ 𝑋)) → 𝑋 ≺ ({𝑦} ∪ 𝑋))
3422, 32, 33syl2anc 586 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → 𝑋 ≺ ({𝑦} ∪ 𝑋))
3534adantrl 714 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝑋 ≺ ({𝑦} ∪ 𝑋))
36 simpl1 1187 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝑅 ∈ DivRing)
37 simpl2 1188 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝐼 ∈ Fin)
38 snssi 4741 . . . . . . . . . . . 12 (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) → {𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼)))
3938adantr 483 . . . . . . . . . . 11 ((𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → {𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼)))
4073ad2ant3 1131 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼)))
41 unss 4160 . . . . . . . . . . . 12 (({𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) ↔ ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
4241biimpi 218 . . . . . . . . . . 11 (({𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
4339, 40, 42syl2anr 598 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
44 simpr 487 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
4528con3dimp 411 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦𝑋)
46 difsn 4731 . . . . . . . . . . . . . . . . . 18 𝑦𝑋 → (𝑋 ∖ {𝑦}) = 𝑋)
4745, 46syl 17 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → (𝑋 ∖ {𝑦}) = 𝑋)
4847fveq2d 6674 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
4944, 48neleqtrrd 2935 . . . . . . . . . . . . . . 15 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
5049adantlr 713 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
51 difsnid 4743 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑋 → ((𝑋 ∖ {𝑧}) ∪ {𝑧}) = 𝑋)
5251fveq2d 6674 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑋 → ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
5352eleq2d 2898 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑋 → (𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})) ↔ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
5453notbid 320 . . . . . . . . . . . . . . . . . 18 (𝑧𝑋 → (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})) ↔ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
5554biimparc 482 . . . . . . . . . . . . . . . . 17 ((¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ∧ 𝑧𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})))
5655adantll 712 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})))
573frlmsca 20897 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
58 simpl 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ DivRing)
5957, 58eqeltrrd 2914 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Scalar‘(𝑅 freeLMod 𝐼)) ∈ DivRing)
60 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
6160islvec 19876 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 freeLMod 𝐼) ∈ LVec ↔ ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ DivRing))
625, 59, 61sylanbrc 585 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LVec)
63623adant3 1128 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑅 freeLMod 𝐼) ∈ LVec)
6463ad4antr 730 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → (𝑅 freeLMod 𝐼) ∈ LVec)
657ssdifssd 4119 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → (𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
66653ad2ant3 1131 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
6766ad4antr 730 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → (𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
68 simp-4r 782 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)))
69 difundir 4257 . . . . . . . . . . . . . . . . . . . . . . . 24 (({𝑦} ∪ 𝑋) ∖ {𝑧}) = (({𝑦} ∖ {𝑧}) ∪ (𝑋 ∖ {𝑧}))
7069equncomi 4131 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑦} ∪ 𝑋) ∖ {𝑧}) = ((𝑋 ∖ {𝑧}) ∪ ({𝑦} ∖ {𝑧}))
71 elsni 4584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 ∈ {𝑦} → 𝑧 = 𝑦)
7271eleq1d 2897 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ {𝑦} → (𝑧𝑋𝑦𝑋))
7372notbid 320 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ {𝑦} → (¬ 𝑧𝑋 ↔ ¬ 𝑦𝑋))
7445, 73syl5ibrcom 249 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → (𝑧 ∈ {𝑦} → ¬ 𝑧𝑋))
7574con2d 136 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → (𝑧𝑋 → ¬ 𝑧 ∈ {𝑦}))
7675imp 409 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ¬ 𝑧 ∈ {𝑦})
77 difsn 4731 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 ∈ {𝑦} → ({𝑦} ∖ {𝑧}) = {𝑦})
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ({𝑦} ∖ {𝑧}) = {𝑦})
7978uneq2d 4139 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ((𝑋 ∖ {𝑧}) ∪ ({𝑦} ∖ {𝑧})) = ((𝑋 ∖ {𝑧}) ∪ {𝑦}))
8070, 79syl5eq 2868 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → (({𝑦} ∪ 𝑋) ∖ {𝑧}) = ((𝑋 ∖ {𝑧}) ∪ {𝑦}))
8180fveq2d 6674 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})))
8281eleq2d 2898 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦}))))
8382adantllr 717 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦}))))
8483biimpa 479 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})))
85 drngnzr 20035 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
8685adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ NzRing)
8757, 86eqeltrrd 2914 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing)
885, 87jca 514 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing))
8988anim1i 616 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))))
90893impa 1106 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))))
918, 60lindsind2 20963 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑧𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧})))
92913expa 1114 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑧𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧})))
9390, 92sylan 582 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑧𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧})))
9493ad5ant14 756 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧})))
9584, 94eldifd 3947 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑧 ∈ (((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})) ∖ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧}))))
96 eqid 2821 . . . . . . . . . . . . . . . . . 18 (LSubSp‘(𝑅 freeLMod 𝐼)) = (LSubSp‘(𝑅 freeLMod 𝐼))
976, 96, 8lspsolv 19915 . . . . . . . . . . . . . . . . 17 (((𝑅 freeLMod 𝐼) ∈ LVec ∧ ((𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑧 ∈ (((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})) ∖ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧}))))) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})))
9864, 67, 68, 95, 97syl13anc 1368 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})))
9956, 98mtand 814 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))
10099ralrimiva 3182 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ∀𝑧𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))
101 ralunb 4167 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ (∀𝑧 ∈ {𝑦} ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∧ ∀𝑧𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
102 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦𝑧 = 𝑦)
103 sneq 4577 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → {𝑧} = {𝑦})
104103difeq2d 4099 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (({𝑦} ∪ 𝑋) ∖ {𝑧}) = (({𝑦} ∪ 𝑋) ∖ {𝑦}))
105 uncom 4129 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝑦} ∪ 𝑋) = (𝑋 ∪ {𝑦})
106105difeq1i 4095 . . . . . . . . . . . . . . . . . . . . . 22 (({𝑦} ∪ 𝑋) ∖ {𝑦}) = ((𝑋 ∪ {𝑦}) ∖ {𝑦})
107 difun2 4429 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∪ {𝑦}) ∖ {𝑦}) = (𝑋 ∖ {𝑦})
108106, 107eqtri 2844 . . . . . . . . . . . . . . . . . . . . 21 (({𝑦} ∪ 𝑋) ∖ {𝑦}) = (𝑋 ∖ {𝑦})
109104, 108syl6eq 2872 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → (({𝑦} ∪ 𝑋) ∖ {𝑧}) = (𝑋 ∖ {𝑦}))
110109fveq2d 6674 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
111102, 110eleq12d 2907 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦}))))
112111notbid 320 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑦 → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦}))))
11323, 112ralsn 4619 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ {𝑦} ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
114113anbi1i 625 . . . . . . . . . . . . . . 15 ((∀𝑧 ∈ {𝑦} ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∧ ∀𝑧𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) ↔ (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ∧ ∀𝑧𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
115101, 114bitri 277 . . . . . . . . . . . . . 14 (∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ∧ ∀𝑧𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
11650, 100, 115sylanbrc 585 . . . . . . . . . . . . 13 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))
117116ex 415 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
11863ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑅 freeLMod 𝐼) ∈ LVec)
119 eldifsn 4719 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ↔ (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠ (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))))
120119biimpi 218 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) → (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠ (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))))
121120adantl 484 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠ (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))))
12238, 7, 42syl2anr 598 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
1231223ad2antl3 1183 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
124123sselda 3967 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼)))
125124adantr 483 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼)))
126 eqid 2821 . . . . . . . . . . . . . . . . . . . 20 ( ·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠 ‘(𝑅 freeLMod 𝐼))
127 eqid 2821 . . . . . . . . . . . . . . . . . . . 20 (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) = (Base‘(Scalar‘(𝑅 freeLMod 𝐼)))
128 eqid 2821 . . . . . . . . . . . . . . . . . . . 20 (0g‘(Scalar‘(𝑅 freeLMod 𝐼))) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))
1296, 60, 126, 127, 128, 8lspsnvs 19886 . . . . . . . . . . . . . . . . . . 19 (((𝑅 freeLMod 𝐼) ∈ LVec ∧ (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠ (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))) ∧ 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧)}) = ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}))
130118, 121, 125, 129syl3anc 1367 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → ((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧)}) = ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}))
131130sseq1d 3998 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧)}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
13253adant3 1128 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑅 freeLMod 𝐼) ∈ LMod)
133132ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑅 freeLMod 𝐼) ∈ LMod)
134 df-3an 1085 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ↔ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))))
135122ssdifssd 4119 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (({𝑦} ∪ 𝑋) ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
1366, 96, 8lspcl 19748 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (({𝑦} ∪ 𝑋) ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
1375, 135, 136syl2an 597 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
138137anassrs 470 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
139134, 138sylanb 583 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
140139ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
141 eldifi 4103 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) → 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))))
142141adantl 484 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))))
1436, 60, 126, 127lmodvscl 19651 . . . . . . . . . . . . . . . . . . 19 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ (Base‘(𝑅 freeLMod 𝐼)))
144133, 142, 125, 143syl3anc 1367 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ (Base‘(𝑅 freeLMod 𝐼)))
1456, 96, 8, 133, 140, 144lspsnel5 19767 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → ((𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧)}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
146132ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → (𝑅 freeLMod 𝐼) ∈ LMod)
147139adantr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
1486, 96, 8, 146, 147, 124lspsnel5 19767 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
149148adantr 483 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
150131, 145, 1493bitr4rd 314 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
151150notbid 320 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
152151biimpd 231 . . . . . . . . . . . . . 14 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) → ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
153152ralrimdva 3189 . . . . . . . . . . . . 13 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) → ∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
154153ralimdva 3177 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
155117, 154syld 47 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
156155impr 457 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))
157 ovex 7189 . . . . . . . . . . 11 (𝑅 freeLMod 𝐼) ∈ V
1586, 126, 8, 60, 127, 128islinds2 20957 . . . . . . . . . . 11 ((𝑅 freeLMod 𝐼) ∈ V → (({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ↔ (({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))))
159157, 158ax-mp 5 . . . . . . . . . 10 (({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ↔ (({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
16043, 156, 159sylanbrc 585 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼)))
161 lindsdom 34901 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ ({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ≼ 𝐼)
16236, 37, 160, 161syl3anc 1367 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ({𝑦} ∪ 𝑋) ≼ 𝐼)
163 sdomdomtr 8650 . . . . . . . 8 ((𝑋 ≺ ({𝑦} ∪ 𝑋) ∧ ({𝑦} ∪ 𝑋) ≼ 𝐼) → 𝑋𝐼)
16435, 162, 163syl2anc 586 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝑋𝐼)
165164stoic1a 1773 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑋𝐼) → ¬ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
16614, 165sylan2 594 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → ¬ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
167 iman 404 . . . . 5 ((𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ↔ ¬ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
168166, 167sylibr 236 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
169168ssrdv 3973 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → (Base‘(𝑅 freeLMod 𝐼)) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
17012, 169eqssd 3984 . 2 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) = (Base‘(𝑅 freeLMod 𝐼)))
171 eqid 2821 . . 3 (LBasis‘(𝑅 freeLMod 𝐼)) = (LBasis‘(𝑅 freeLMod 𝐼))
1726, 171, 8islbs4 20976 . 2 (𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼)) ↔ (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) = (Base‘(𝑅 freeLMod 𝐼))))
1731, 170, 172sylanbrc 585 1 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → 𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  Vcvv 3494  cdif 3933  cun 3934  wss 3936  wpss 3937  {csn 4567   class class class wbr 5066  cfv 6355  (class class class)co 7156  cen 8506  cdom 8507  csdm 8508  Fincfn 8509  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713  Ringcrg 19297  DivRingcdr 19502  LModclmod 19634  LSubSpclss 19703  LSpanclspn 19743  LBasisclbs 19846  LVecclvec 19874  NzRingcnzr 20030   freeLMod cfrlm 20890  LIndSclinds 20949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-mri 16859  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-drng 19504  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lmhm 19794  df-lbs 19847  df-lvec 19875  df-sra 19944  df-rgmod 19945  df-nzr 20031  df-dsmm 20876  df-frlm 20891  df-uvc 20927  df-lindf 20950  df-linds 20951
This theorem is referenced by:  matunitlindflem2  34904
  Copyright terms: Public domain W3C validator