Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtybndlem Structured version   Visualization version   GIF version

Theorem ismtybndlem 33272
Description: Lemma for ismtybnd 33273. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 19-Jan-2014.)
Assertion
Ref Expression
ismtybndlem ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (Bnd‘𝑋) → 𝑁 ∈ (Bnd‘𝑌)))

Proof of Theorem ismtybndlem
Dummy variables 𝑤 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isismty 33267 . . . . . . . . . . . . 13 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑧𝑋𝑤𝑋 (𝑧𝑀𝑤) = ((𝐹𝑧)𝑁(𝐹𝑤)))))
21biimp3a 1429 . . . . . . . . . . . 12 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑧𝑋𝑤𝑋 (𝑧𝑀𝑤) = ((𝐹𝑧)𝑁(𝐹𝑤))))
32simpld 475 . . . . . . . . . . 11 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → 𝐹:𝑋1-1-onto𝑌)
4 f1ocnv 6111 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
5 f1of 6099 . . . . . . . . . . 11 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
63, 4, 53syl 18 . . . . . . . . . 10 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → 𝐹:𝑌𝑋)
76ffvelrnda 6320 . . . . . . . . 9 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦𝑌) → (𝐹𝑦) ∈ 𝑋)
8 oveq1 6617 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑦) → (𝑥(ball‘𝑀)𝑟) = ((𝐹𝑦)(ball‘𝑀)𝑟))
98eqeq2d 2631 . . . . . . . . . . 11 (𝑥 = (𝐹𝑦) → (𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ 𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟)))
109rexbidv 3046 . . . . . . . . . 10 (𝑥 = (𝐹𝑦) → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟)))
1110rspcv 3294 . . . . . . . . 9 ((𝐹𝑦) ∈ 𝑋 → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟)))
127, 11syl 17 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦𝑌) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟)))
13 imaeq2 5426 . . . . . . . . . . 11 (𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟) → (𝐹𝑋) = (𝐹 “ ((𝐹𝑦)(ball‘𝑀)𝑟)))
14 f1ofo 6106 . . . . . . . . . . . . . 14 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
15 foima 6082 . . . . . . . . . . . . . 14 (𝐹:𝑋onto𝑌 → (𝐹𝑋) = 𝑌)
163, 14, 153syl 18 . . . . . . . . . . . . 13 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹𝑋) = 𝑌)
1716adantr 481 . . . . . . . . . . . 12 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝐹𝑋) = 𝑌)
18 rpxr 11792 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
1918adantl 482 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
207, 19anim12dan 881 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ((𝐹𝑦) ∈ 𝑋𝑟 ∈ ℝ*))
21 ismtyima 33269 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ ((𝐹𝑦) ∈ 𝑋𝑟 ∈ ℝ*)) → (𝐹 “ ((𝐹𝑦)(ball‘𝑀)𝑟)) = ((𝐹‘(𝐹𝑦))(ball‘𝑁)𝑟))
2220, 21syldan 487 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝐹 “ ((𝐹𝑦)(ball‘𝑀)𝑟)) = ((𝐹‘(𝐹𝑦))(ball‘𝑁)𝑟))
23 simpl 473 . . . . . . . . . . . . . . 15 ((𝑦𝑌𝑟 ∈ ℝ+) → 𝑦𝑌)
24 f1ocnvfv2 6493 . . . . . . . . . . . . . . 15 ((𝐹:𝑋1-1-onto𝑌𝑦𝑌) → (𝐹‘(𝐹𝑦)) = 𝑦)
253, 23, 24syl2an 494 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝐹‘(𝐹𝑦)) = 𝑦)
2625oveq1d 6625 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ((𝐹‘(𝐹𝑦))(ball‘𝑁)𝑟) = (𝑦(ball‘𝑁)𝑟))
2722, 26eqtrd 2655 . . . . . . . . . . . 12 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝐹 “ ((𝐹𝑦)(ball‘𝑀)𝑟)) = (𝑦(ball‘𝑁)𝑟))
2817, 27eqeq12d 2636 . . . . . . . . . . 11 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ((𝐹𝑋) = (𝐹 “ ((𝐹𝑦)(ball‘𝑀)𝑟)) ↔ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
2913, 28syl5ib 234 . . . . . . . . . 10 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟) → 𝑌 = (𝑦(ball‘𝑁)𝑟)))
3029anassrs 679 . . . . . . . . 9 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦𝑌) ∧ 𝑟 ∈ ℝ+) → (𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟) → 𝑌 = (𝑦(ball‘𝑁)𝑟)))
3130reximdva 3012 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦𝑌) → (∃𝑟 ∈ ℝ+ 𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
3212, 31syld 47 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦𝑌) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
3332ralrimdva 2964 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
34 simp2 1060 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → 𝑁 ∈ (∞Met‘𝑌))
3533, 34jctild 565 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))))
36353expib 1265 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))))
3736com12 32 . . 3 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (∞Met‘𝑋) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))))
3837impd 447 . 2 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → ((𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))))
39 isbndx 33248 . 2 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
40 isbndx 33248 . 2 (𝑁 ∈ (Bnd‘𝑌) ↔ (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
4138, 39, 403imtr4g 285 1 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (Bnd‘𝑋) → 𝑁 ∈ (Bnd‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908  ccnv 5078  cima 5082  wf 5848  ontowfo 5850  1-1-ontowf1o 5851  cfv 5852  (class class class)co 6610  *cxr 10025  +crp 11784  ∞Metcxmt 19663  ballcbl 19665  Bndcbnd 33233   Ismty cismty 33264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-1st 7120  df-2nd 7121  df-er 7694  df-ec 7696  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-2 11031  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-bnd 33245  df-ismty 33265
This theorem is referenced by:  ismtybnd  33273
  Copyright terms: Public domain W3C validator