Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  karatsuba Structured version   Visualization version   GIF version

Theorem karatsuba 15716
 Description: The Karatsuba multiplication algorithm. If 𝑋 and 𝑌 are decomposed into two groups of digits of length 𝑀 (only the lower group is known to be this size but the algorithm is most efficient when the partition is chosen near the middle of the digit string), then 𝑋𝑌 can be written in three groups of digits, where each group needs only one multiplication. Thus, we can halve both inputs with only three multiplications on the smaller operands, yielding an asymptotic improvement of n^(log2 3) instead of n^2 for the "naive" algorithm decmul1c 11531. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 9-Sep-2021.)
Hypotheses
Ref Expression
karatsuba.a 𝐴 ∈ ℕ0
karatsuba.b 𝐵 ∈ ℕ0
karatsuba.c 𝐶 ∈ ℕ0
karatsuba.d 𝐷 ∈ ℕ0
karatsuba.s 𝑆 ∈ ℕ0
karatsuba.m 𝑀 ∈ ℕ0
karatsuba.r (𝐴 · 𝐶) = 𝑅
karatsuba.t (𝐵 · 𝐷) = 𝑇
karatsuba.e ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = ((𝑅 + 𝑆) + 𝑇)
karatsuba.x ((𝐴 · (10↑𝑀)) + 𝐵) = 𝑋
karatsuba.y ((𝐶 · (10↑𝑀)) + 𝐷) = 𝑌
karatsuba.w ((𝑅 · (10↑𝑀)) + 𝑆) = 𝑊
karatsuba.z ((𝑊 · (10↑𝑀)) + 𝑇) = 𝑍
Assertion
Ref Expression
karatsuba (𝑋 · 𝑌) = 𝑍

Proof of Theorem karatsuba
StepHypRef Expression
1 karatsuba.a . . . . . 6 𝐴 ∈ ℕ0
21nn0cni 11248 . . . . 5 𝐴 ∈ ℂ
3 10nn0 11460 . . . . . . 7 10 ∈ ℕ0
43nn0cni 11248 . . . . . 6 10 ∈ ℂ
5 karatsuba.m . . . . . 6 𝑀 ∈ ℕ0
6 expcl 12818 . . . . . 6 ((10 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (10↑𝑀) ∈ ℂ)
74, 5, 6mp2an 707 . . . . 5 (10↑𝑀) ∈ ℂ
82, 7mulcli 9989 . . . 4 (𝐴 · (10↑𝑀)) ∈ ℂ
9 karatsuba.b . . . . 5 𝐵 ∈ ℕ0
109nn0cni 11248 . . . 4 𝐵 ∈ ℂ
11 karatsuba.c . . . . . 6 𝐶 ∈ ℕ0
1211nn0cni 11248 . . . . 5 𝐶 ∈ ℂ
1312, 7mulcli 9989 . . . 4 (𝐶 · (10↑𝑀)) ∈ ℂ
14 karatsuba.d . . . . 5 𝐷 ∈ ℕ0
1514nn0cni 11248 . . . 4 𝐷 ∈ ℂ
168, 10, 13, 15muladdi 10425 . . 3 (((𝐴 · (10↑𝑀)) + 𝐵) · ((𝐶 · (10↑𝑀)) + 𝐷)) = ((((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (𝐷 · 𝐵)) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵)))
178, 13mulcli 9989 . . . 4 ((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) ∈ ℂ
1815, 10mulcli 9989 . . . 4 (𝐷 · 𝐵) ∈ ℂ
198, 15mulcli 9989 . . . . 5 ((𝐴 · (10↑𝑀)) · 𝐷) ∈ ℂ
2013, 10mulcli 9989 . . . . 5 ((𝐶 · (10↑𝑀)) · 𝐵) ∈ ℂ
2119, 20addcli 9988 . . . 4 (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵)) ∈ ℂ
2217, 18, 21add32i 10203 . . 3 ((((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (𝐷 · 𝐵)) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))) = ((((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))) + (𝐷 · 𝐵))
238, 12mulcli 9989 . . . . . 6 ((𝐴 · (10↑𝑀)) · 𝐶) ∈ ℂ
24 karatsuba.s . . . . . . 7 𝑆 ∈ ℕ0
2524nn0cni 11248 . . . . . 6 𝑆 ∈ ℂ
2623, 25, 7adddiri 9995 . . . . 5 ((((𝐴 · (10↑𝑀)) · 𝐶) + 𝑆) · (10↑𝑀)) = ((((𝐴 · (10↑𝑀)) · 𝐶) · (10↑𝑀)) + (𝑆 · (10↑𝑀)))
272, 7, 12mul32i 10176 . . . . . . . . 9 ((𝐴 · (10↑𝑀)) · 𝐶) = ((𝐴 · 𝐶) · (10↑𝑀))
28 karatsuba.r . . . . . . . . . 10 (𝐴 · 𝐶) = 𝑅
2928oveq1i 6614 . . . . . . . . 9 ((𝐴 · 𝐶) · (10↑𝑀)) = (𝑅 · (10↑𝑀))
3027, 29eqtri 2643 . . . . . . . 8 ((𝐴 · (10↑𝑀)) · 𝐶) = (𝑅 · (10↑𝑀))
3130oveq1i 6614 . . . . . . 7 (((𝐴 · (10↑𝑀)) · 𝐶) + 𝑆) = ((𝑅 · (10↑𝑀)) + 𝑆)
32 karatsuba.w . . . . . . 7 ((𝑅 · (10↑𝑀)) + 𝑆) = 𝑊
3331, 32eqtri 2643 . . . . . 6 (((𝐴 · (10↑𝑀)) · 𝐶) + 𝑆) = 𝑊
3433oveq1i 6614 . . . . 5 ((((𝐴 · (10↑𝑀)) · 𝐶) + 𝑆) · (10↑𝑀)) = (𝑊 · (10↑𝑀))
358, 12, 7mulassi 9993 . . . . . 6 (((𝐴 · (10↑𝑀)) · 𝐶) · (10↑𝑀)) = ((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀)))
362, 12mulcli 9989 . . . . . . . . . . . 12 (𝐴 · 𝐶) ∈ ℂ
3736, 18, 25add32i 10203 . . . . . . . . . . 11 (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + 𝑆) = (((𝐴 · 𝐶) + 𝑆) + (𝐷 · 𝐵))
3828oveq1i 6614 . . . . . . . . . . . 12 ((𝐴 · 𝐶) + 𝑆) = (𝑅 + 𝑆)
39 karatsuba.t . . . . . . . . . . . . 13 (𝐵 · 𝐷) = 𝑇
4010, 15, 39mulcomli 9991 . . . . . . . . . . . 12 (𝐷 · 𝐵) = 𝑇
4138, 40oveq12i 6616 . . . . . . . . . . 11 (((𝐴 · 𝐶) + 𝑆) + (𝐷 · 𝐵)) = ((𝑅 + 𝑆) + 𝑇)
4237, 41eqtri 2643 . . . . . . . . . 10 (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + 𝑆) = ((𝑅 + 𝑆) + 𝑇)
43 karatsuba.e . . . . . . . . . 10 ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = ((𝑅 + 𝑆) + 𝑇)
442, 10, 12, 15muladdi 10425 . . . . . . . . . 10 ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))
4542, 43, 443eqtr2i 2649 . . . . . . . . 9 (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + 𝑆) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))
4636, 18addcli 9988 . . . . . . . . . 10 ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ
472, 15mulcli 9989 . . . . . . . . . . 11 (𝐴 · 𝐷) ∈ ℂ
4812, 10mulcli 9989 . . . . . . . . . . 11 (𝐶 · 𝐵) ∈ ℂ
4947, 48addcli 9988 . . . . . . . . . 10 ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ
5046, 25, 49addcani 10173 . . . . . . . . 9 ((((𝐴 · 𝐶) + (𝐷 · 𝐵)) + 𝑆) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))) ↔ 𝑆 = ((𝐴 · 𝐷) + (𝐶 · 𝐵)))
5145, 50mpbi 220 . . . . . . . 8 𝑆 = ((𝐴 · 𝐷) + (𝐶 · 𝐵))
5251oveq1i 6614 . . . . . . 7 (𝑆 · (10↑𝑀)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) · (10↑𝑀))
5347, 48, 7adddiri 9995 . . . . . . 7 (((𝐴 · 𝐷) + (𝐶 · 𝐵)) · (10↑𝑀)) = (((𝐴 · 𝐷) · (10↑𝑀)) + ((𝐶 · 𝐵) · (10↑𝑀)))
542, 15, 7mul32i 10176 . . . . . . . 8 ((𝐴 · 𝐷) · (10↑𝑀)) = ((𝐴 · (10↑𝑀)) · 𝐷)
5512, 10, 7mul32i 10176 . . . . . . . 8 ((𝐶 · 𝐵) · (10↑𝑀)) = ((𝐶 · (10↑𝑀)) · 𝐵)
5654, 55oveq12i 6616 . . . . . . 7 (((𝐴 · 𝐷) · (10↑𝑀)) + ((𝐶 · 𝐵) · (10↑𝑀))) = (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))
5752, 53, 563eqtri 2647 . . . . . 6 (𝑆 · (10↑𝑀)) = (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))
5835, 57oveq12i 6616 . . . . 5 ((((𝐴 · (10↑𝑀)) · 𝐶) · (10↑𝑀)) + (𝑆 · (10↑𝑀))) = (((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵)))
5926, 34, 583eqtr3ri 2652 . . . 4 (((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))) = (𝑊 · (10↑𝑀))
6059, 40oveq12i 6616 . . 3 ((((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))) + (𝐷 · 𝐵)) = ((𝑊 · (10↑𝑀)) + 𝑇)
6116, 22, 603eqtri 2647 . 2 (((𝐴 · (10↑𝑀)) + 𝐵) · ((𝐶 · (10↑𝑀)) + 𝐷)) = ((𝑊 · (10↑𝑀)) + 𝑇)
62 karatsuba.x . . 3 ((𝐴 · (10↑𝑀)) + 𝐵) = 𝑋
63 karatsuba.y . . 3 ((𝐶 · (10↑𝑀)) + 𝐷) = 𝑌
6462, 63oveq12i 6616 . 2 (((𝐴 · (10↑𝑀)) + 𝐵) · ((𝐶 · (10↑𝑀)) + 𝐷)) = (𝑋 · 𝑌)
65 karatsuba.z . 2 ((𝑊 · (10↑𝑀)) + 𝑇) = 𝑍
6661, 64, 653eqtr3i 2651 1 (𝑋 · 𝑌) = 𝑍
 Colors of variables: wff setvar class Syntax hints:   = wceq 1480   ∈ wcel 1987  (class class class)co 6604  ℂcc 9878  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885  ℕ0cn0 11236  ;cdc 11437  ↑cexp 12800 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-seq 12742  df-exp 12801 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator