Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfgrwlkprop Structured version   Visualization version   GIF version

Theorem lfgrwlkprop 41001
Description: Two adjacent vertices in a 1-walk are different in a loop-free graph. (Contributed by AV, 28-Jan-2021.)
Hypothesis
Ref Expression
lfgrwlkprop.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lfgrwlkprop ((𝐹(1Walks‘𝐺)𝑃𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝐺   𝑘,𝐼,𝑥   𝑃,𝑘   𝑘,𝑉,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥)

Proof of Theorem lfgrwlkprop
StepHypRef Expression
1 wlkv 40920 . . . . 5 (𝐹(1Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 eqid 2514 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
3 lfgrwlkprop.i . . . . . 6 𝐼 = (iEdg‘𝐺)
42, 3is1wlk 40918 . . . . 5 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(1Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
51, 4syl 17 . . . 4 (𝐹(1Walks‘𝐺)𝑃 → (𝐹(1Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
6 ifptru 1016 . . . . . . . . . . . 12 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}))
76adantr 479 . . . . . . . . . . 11 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) ∧ 𝑘 ∈ (0..^(#‘𝐹)))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}))
8 simplr 787 . . . . . . . . . . . . . 14 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)})
9 wrdsymbcl 13032 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word dom 𝐼𝑘 ∈ (0..^(#‘𝐹))) → (𝐹𝑘) ∈ dom 𝐼)
109ad4ant14 1284 . . . . . . . . . . . . . 14 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → (𝐹𝑘) ∈ dom 𝐼)
118, 10ffvelrnd 6152 . . . . . . . . . . . . 13 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → (𝐼‘(𝐹𝑘)) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)})
12 fveq2 5987 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐼‘(𝐹𝑘)) → (#‘𝑥) = (#‘(𝐼‘(𝐹𝑘))))
1312breq2d 4493 . . . . . . . . . . . . . . 15 (𝑥 = (𝐼‘(𝐹𝑘)) → (2 ≤ (#‘𝑥) ↔ 2 ≤ (#‘(𝐼‘(𝐹𝑘)))))
1413elrab 3235 . . . . . . . . . . . . . 14 ((𝐼‘(𝐹𝑘)) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ↔ ((𝐼‘(𝐹𝑘)) ∈ 𝒫 𝑉 ∧ 2 ≤ (#‘(𝐼‘(𝐹𝑘)))))
15 fveq2 5987 . . . . . . . . . . . . . . . . . . 19 ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (#‘(𝐼‘(𝐹𝑘))) = (#‘{(𝑃𝑘)}))
1615breq2d 4493 . . . . . . . . . . . . . . . . . 18 ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (2 ≤ (#‘(𝐼‘(𝐹𝑘))) ↔ 2 ≤ (#‘{(𝑃𝑘)})))
17 fvex 5997 . . . . . . . . . . . . . . . . . . . . 21 (𝑃𝑘) ∈ V
18 hashsng 12885 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃𝑘) ∈ V → (#‘{(𝑃𝑘)}) = 1)
1917, 18ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (#‘{(𝑃𝑘)}) = 1
2019breq2i 4489 . . . . . . . . . . . . . . . . . . 19 (2 ≤ (#‘{(𝑃𝑘)}) ↔ 2 ≤ 1)
21 1lt2 10949 . . . . . . . . . . . . . . . . . . . 20 1 < 2
22 1re 9794 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℝ
23 2re 10845 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
2422, 23ltnlei 9909 . . . . . . . . . . . . . . . . . . . . 21 (1 < 2 ↔ ¬ 2 ≤ 1)
25 pm2.21 118 . . . . . . . . . . . . . . . . . . . . 21 (¬ 2 ≤ 1 → (2 ≤ 1 → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
2624, 25sylbi 205 . . . . . . . . . . . . . . . . . . . 20 (1 < 2 → (2 ≤ 1 → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
2721, 26ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (2 ≤ 1 → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
2820, 27sylbi 205 . . . . . . . . . . . . . . . . . 18 (2 ≤ (#‘{(𝑃𝑘)}) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
2916, 28syl6bi 241 . . . . . . . . . . . . . . . . 17 ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (2 ≤ (#‘(𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3029com12 32 . . . . . . . . . . . . . . . 16 (2 ≤ (#‘(𝐼‘(𝐹𝑘))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3130adantl 480 . . . . . . . . . . . . . . 15 (((𝐼‘(𝐹𝑘)) ∈ 𝒫 𝑉 ∧ 2 ≤ (#‘(𝐼‘(𝐹𝑘)))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3231a1i 11 . . . . . . . . . . . . . 14 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → (((𝐼‘(𝐹𝑘)) ∈ 𝒫 𝑉 ∧ 2 ≤ (#‘(𝐼‘(𝐹𝑘)))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
3314, 32syl5bi 230 . . . . . . . . . . . . 13 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → ((𝐼‘(𝐹𝑘)) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
3411, 33mpd 15 . . . . . . . . . . . 12 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3534adantl 480 . . . . . . . . . . 11 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) ∧ 𝑘 ∈ (0..^(#‘𝐹)))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
367, 35sylbid 228 . . . . . . . . . 10 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) ∧ 𝑘 ∈ (0..^(#‘𝐹)))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3736ex 448 . . . . . . . . 9 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
38 neqne 2694 . . . . . . . . . 10 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
39382a1d 26 . . . . . . . . 9 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
4037, 39pm2.61i 174 . . . . . . . 8 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
4140ralimdva 2849 . . . . . . 7 (((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
4241ex 448 . . . . . 6 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
4342com23 83 . . . . 5 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
44433impia 1252 . . . 4 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
455, 44syl6bi 241 . . 3 (𝐹(1Walks‘𝐺)𝑃 → (𝐹(1Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
4645pm2.43i 49 . 2 (𝐹(1Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
4746imp 443 1 ((𝐹(1Walks‘𝐺)𝑃𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  if-wif 1005  w3a 1030   = wceq 1474  wcel 1938  wne 2684  wral 2800  {crab 2804  Vcvv 3077  wss 3444  𝒫 cpw 4011  {csn 4028  {cpr 4030   class class class wbr 4481  dom cdm 4932  wf 5685  cfv 5689  (class class class)co 6426  0cc0 9691  1c1 9692   + caddc 9694   < clt 9829  cle 9830  2c2 10825  ...cfz 12065  ..^cfzo 12202  #chash 12847  Word cword 13005  Vtxcvtx 40334  iEdgciedg 40335  1Walksc1wlks 40901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767  ax-pre-mulgt0 9768
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-ifp 1006  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-om 6834  df-1st 6934  df-2nd 6935  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-1o 7323  df-er 7505  df-map 7622  df-pm 7623  df-en 7718  df-dom 7719  df-sdom 7720  df-fin 7721  df-card 8524  df-pnf 9831  df-mnf 9832  df-xr 9833  df-ltxr 9834  df-le 9835  df-sub 10019  df-neg 10020  df-nn 10776  df-2 10834  df-n0 11048  df-z 11119  df-uz 11428  df-fz 12066  df-fzo 12203  df-hash 12848  df-word 13013  df-1wlks 40905
This theorem is referenced by:  lfgriswlk  41002
  Copyright terms: Public domain W3C validator