MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcld Structured version   Visualization version   GIF version

Theorem lmcld 21101
Description: Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013.)
Hypotheses
Ref Expression
lmff.1 𝑍 = (ℤ𝑀)
lmff.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmff.4 (𝜑𝑀 ∈ ℤ)
lmcls.5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmcls.7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑆)
lmcld.8 (𝜑𝑆 ∈ (Clsd‘𝐽))
Assertion
Ref Expression
lmcld (𝜑𝑃𝑆)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐽   𝑘,𝑀   𝑃,𝑘   𝑆,𝑘   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍

Proof of Theorem lmcld
StepHypRef Expression
1 lmff.1 . . 3 𝑍 = (ℤ𝑀)
2 lmff.3 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 lmff.4 . . 3 (𝜑𝑀 ∈ ℤ)
4 lmcls.5 . . 3 (𝜑𝐹(⇝𝑡𝐽)𝑃)
5 lmcls.7 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑆)
6 lmcld.8 . . . . 5 (𝜑𝑆 ∈ (Clsd‘𝐽))
7 eqid 2621 . . . . . 6 𝐽 = 𝐽
87cldss 20827 . . . . 5 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
96, 8syl 17 . . . 4 (𝜑𝑆 𝐽)
10 toponuni 20713 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
112, 10syl 17 . . . 4 (𝜑𝑋 = 𝐽)
129, 11sseqtr4d 3640 . . 3 (𝜑𝑆𝑋)
131, 2, 3, 4, 5, 12lmcls 21100 . 2 (𝜑𝑃 ∈ ((cls‘𝐽)‘𝑆))
14 cldcls 20840 . . 3 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)
156, 14syl 17 . 2 (𝜑 → ((cls‘𝐽)‘𝑆) = 𝑆)
1613, 15eleqtrd 2702 1 (𝜑𝑃𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1482  wcel 1989  wss 3572   cuni 4434   class class class wbr 4651  cfv 5886  cz 11374  cuz 11684  TopOnctopon 20709  Clsdccld 20814  clsccl 20816  𝑡clm 21024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-pre-lttri 10007  ax-pre-lttrn 10008
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-iin 4521  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-po 5033  df-so 5034  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-1st 7165  df-2nd 7166  df-er 7739  df-pm 7857  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-neg 10266  df-z 11375  df-uz 11685  df-top 20693  df-topon 20710  df-cld 20817  df-ntr 20818  df-cls 20819  df-lm 21027
This theorem is referenced by:  1stckgen  21351  lmle  23093
  Copyright terms: Public domain W3C validator