Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpadright Structured version   Visualization version   GIF version

Theorem lpadright 31976
Description: The suffix of a left-padded word the original word 𝑊. (Contributed by Thierry Arnoux, 7-Aug-2023.)
Hypotheses
Ref Expression
lpadlen.1 (𝜑𝐿 ∈ ℕ0)
lpadlen.2 (𝜑𝑊 ∈ Word 𝑆)
lpadlen.3 (𝜑𝐶𝑆)
lpadright.1 (𝜑𝑀 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))))
lpadright.2 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
Assertion
Ref Expression
lpadright (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = (𝑊𝑁))

Proof of Theorem lpadright
StepHypRef Expression
1 lpadlen.1 . . . 4 (𝜑𝐿 ∈ ℕ0)
2 lpadlen.2 . . . 4 (𝜑𝑊 ∈ Word 𝑆)
3 lpadlen.3 . . . 4 (𝜑𝐶𝑆)
41, 2, 3lpadval 31968 . . 3 (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))
54fveq1d 6665 . 2 (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + 𝑀)))
6 eqeq2 2832 . . . . . 6 (0 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))) → ((♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = 0 ↔ (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊)))))
7 eqeq2 2832 . . . . . 6 ((𝐿 − (♯‘𝑊)) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))) → ((♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊)) ↔ (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊)))))
81adantr 483 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0)
92adantr 483 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑆)
103adantr 483 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐶𝑆)
11 simpr 487 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐿 ≤ (♯‘𝑊))
128, 9, 10, 11lpadlem3 31970 . . . . . . . 8 ((𝜑𝐿 ≤ (♯‘𝑊)) → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) = ∅)
1312fveq2d 6667 . . . . . . 7 ((𝜑𝐿 ≤ (♯‘𝑊)) → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (♯‘∅))
14 hash0 13725 . . . . . . 7 (♯‘∅) = 0
1513, 14syl6eq 2871 . . . . . 6 ((𝜑𝐿 ≤ (♯‘𝑊)) → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = 0)
161adantr 483 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0)
172adantr 483 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑆)
183adantr 483 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐶𝑆)
19 lencl 13878 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0)
202, 19syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝑊) ∈ ℕ0)
2120nn0red 11950 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℝ)
2221adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℝ)
231nn0red 11950 . . . . . . . . 9 (𝜑𝐿 ∈ ℝ)
2423adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℝ)
2521, 23ltnled 10780 . . . . . . . . 9 (𝜑 → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
2625biimpar 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) < 𝐿)
2722, 24, 26ltled 10781 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ≤ 𝐿)
2816, 17, 18, 27lpadlem2 31972 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊)))
296, 7, 15, 28ifbothda 4497 . . . . 5 (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))))
30 lpadright.1 . . . . 5 (𝜑𝑀 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))))
3129, 30eqtr4d 2858 . . . 4 (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = 𝑀)
3231oveq2d 7165 . . 3 (𝜑 → (𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶}))) = (𝑁 + 𝑀))
3332fveq2d 6667 . 2 (𝜑 → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) = ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + 𝑀)))
343lpadlem1 31969 . . 3 (𝜑 → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆)
35 lpadright.2 . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
36 ccatval3 13928 . . 3 ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆𝑊 ∈ Word 𝑆𝑁 ∈ (0..^(♯‘𝑊))) → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) = (𝑊𝑁))
3734, 2, 35, 36syl3anc 1366 . 2 (𝜑 → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) = (𝑊𝑁))
385, 33, 373eqtr2d 2861 1 (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = (𝑊𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wcel 2113  c0 4284  ifcif 4460  {csn 4560   class class class wbr 5059   × cxp 5546  cfv 6348  (class class class)co 7149  cr 10529  0cc0 10530   + caddc 10533   < clt 10668  cle 10669  cmin 10863  0cn0 11891  ..^cfzo 13030  chash 13687  Word cword 13858   ++ cconcat 13917   leftpad clpad 31966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-dju 9323  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12890  df-fzo 13031  df-hash 13688  df-word 13859  df-concat 13918  df-lpad 31967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator