Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrneq2 Structured version   Visualization version   GIF version

Theorem ltrneq2 34953
Description: The equality of two translations is determined by their equality at atoms. (Contributed by NM, 2-Mar-2014.)
Hypotheses
Ref Expression
ltrneq2.a 𝐴 = (Atoms‘𝐾)
ltrneq2.h 𝐻 = (LHyp‘𝐾)
ltrneq2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrneq2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ↔ 𝐹 = 𝐺))
Distinct variable groups:   𝐴,𝑝   𝐹,𝑝   𝐺,𝑝
Allowed substitution hints:   𝑇(𝑝)   𝐻(𝑝)   𝐾(𝑝)   𝑊(𝑝)

Proof of Theorem ltrneq2
Dummy variables 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1062 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl3 1064 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐺𝑇)
3 eqid 2621 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
4 ltrneq2.h . . . . . . . . . . . . . . 15 𝐻 = (LHyp‘𝐾)
5 ltrneq2.t . . . . . . . . . . . . . . 15 𝑇 = ((LTrn‘𝐾)‘𝑊)
63, 4, 5ltrn1o 34929 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
71, 2, 6syl2anc 692 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
8 simpl2 1063 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐹𝑇)
9 simpr3 1067 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝑞𝐴)
10 eqid 2621 . . . . . . . . . . . . . . . 16 (le‘𝐾) = (le‘𝐾)
11 ltrneq2.a . . . . . . . . . . . . . . . 16 𝐴 = (Atoms‘𝐾)
1210, 11, 4, 5ltrncnvat 34946 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑞𝐴) → (𝐹𝑞) ∈ 𝐴)
131, 8, 9, 12syl3anc 1323 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹𝑞) ∈ 𝐴)
143, 11atbase 34095 . . . . . . . . . . . . . 14 ((𝐹𝑞) ∈ 𝐴 → (𝐹𝑞) ∈ (Base‘𝐾))
1513, 14syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹𝑞) ∈ (Base‘𝐾))
16 f1ocnvfv1 6497 . . . . . . . . . . . . 13 ((𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ (𝐹𝑞) ∈ (Base‘𝐾)) → (𝐺‘(𝐺‘(𝐹𝑞))) = (𝐹𝑞))
177, 15, 16syl2anc 692 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺‘(𝐺‘(𝐹𝑞))) = (𝐹𝑞))
18 simpr2 1066 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝))
19 fveq2 6158 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝐹𝑞) → (𝐹𝑝) = (𝐹‘(𝐹𝑞)))
20 fveq2 6158 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝐹𝑞) → (𝐺𝑝) = (𝐺‘(𝐹𝑞)))
2119, 20eqeq12d 2636 . . . . . . . . . . . . . . . 16 (𝑝 = (𝐹𝑞) → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹‘(𝐹𝑞)) = (𝐺‘(𝐹𝑞))))
2221rspcv 3295 . . . . . . . . . . . . . . 15 ((𝐹𝑞) ∈ 𝐴 → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → (𝐹‘(𝐹𝑞)) = (𝐺‘(𝐹𝑞))))
2313, 18, 22sylc 65 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹‘(𝐹𝑞)) = (𝐺‘(𝐹𝑞)))
243, 4, 5ltrn1o 34929 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
251, 8, 24syl2anc 692 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
263, 11atbase 34095 . . . . . . . . . . . . . . . 16 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
279, 26syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝑞 ∈ (Base‘𝐾))
28 f1ocnvfv2 6498 . . . . . . . . . . . . . . 15 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑞)) = 𝑞)
2925, 27, 28syl2anc 692 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹‘(𝐹𝑞)) = 𝑞)
3023, 29eqtr3d 2657 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺‘(𝐹𝑞)) = 𝑞)
3130fveq2d 6162 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺‘(𝐺‘(𝐹𝑞))) = (𝐺𝑞))
3217, 31eqtr3d 2657 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹𝑞) = (𝐺𝑞))
3332breq1d 4633 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ((𝐹𝑞)(le‘𝐾)𝑥 ↔ (𝐺𝑞)(le‘𝐾)𝑥))
34 simpr1 1065 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝑥 ∈ (Base‘𝐾))
35 f1ocnvfv1 6497 . . . . . . . . . . . 12 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑥)) = 𝑥)
3625, 34, 35syl2anc 692 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹‘(𝐹𝑥)) = 𝑥)
3736breq2d 4635 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ((𝐹𝑞)(le‘𝐾)(𝐹‘(𝐹𝑥)) ↔ (𝐹𝑞)(le‘𝐾)𝑥))
38 f1ocnvfv1 6497 . . . . . . . . . . . 12 ((𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐺‘(𝐺𝑥)) = 𝑥)
397, 34, 38syl2anc 692 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺‘(𝐺𝑥)) = 𝑥)
4039breq2d 4635 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ((𝐺𝑞)(le‘𝐾)(𝐺‘(𝐺𝑥)) ↔ (𝐺𝑞)(le‘𝐾)𝑥))
4133, 37, 403bitr4d 300 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ((𝐹𝑞)(le‘𝐾)(𝐹‘(𝐹𝑥)) ↔ (𝐺𝑞)(le‘𝐾)(𝐺‘(𝐺𝑥))))
42 simpl1l 1110 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐾 ∈ HL)
43 eqid 2621 . . . . . . . . . . . 12 (LAut‘𝐾) = (LAut‘𝐾)
444, 43, 5ltrnlaut 34928 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
451, 8, 44syl2anc 692 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐹 ∈ (LAut‘𝐾))
463, 4, 5ltrncl 34930 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑥 ∈ (Base‘𝐾)) → (𝐹𝑥) ∈ (Base‘𝐾))
471, 8, 34, 46syl3anc 1323 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹𝑥) ∈ (Base‘𝐾))
483, 10, 43lautcnvle 34894 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ (𝐹𝑥) ∈ (Base‘𝐾))) → (𝑞(le‘𝐾)(𝐹𝑥) ↔ (𝐹𝑞)(le‘𝐾)(𝐹‘(𝐹𝑥))))
4942, 45, 27, 47, 48syl22anc 1324 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝑞(le‘𝐾)(𝐹𝑥) ↔ (𝐹𝑞)(le‘𝐾)(𝐹‘(𝐹𝑥))))
504, 43, 5ltrnlaut 34928 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺 ∈ (LAut‘𝐾))
511, 2, 50syl2anc 692 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐺 ∈ (LAut‘𝐾))
523, 4, 5ltrncl 34930 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑥 ∈ (Base‘𝐾)) → (𝐺𝑥) ∈ (Base‘𝐾))
531, 2, 34, 52syl3anc 1323 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺𝑥) ∈ (Base‘𝐾))
543, 10, 43lautcnvle 34894 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝐺 ∈ (LAut‘𝐾)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ (𝐺𝑥) ∈ (Base‘𝐾))) → (𝑞(le‘𝐾)(𝐺𝑥) ↔ (𝐺𝑞)(le‘𝐾)(𝐺‘(𝐺𝑥))))
5542, 51, 27, 53, 54syl22anc 1324 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝑞(le‘𝐾)(𝐺𝑥) ↔ (𝐺𝑞)(le‘𝐾)(𝐺‘(𝐺𝑥))))
5641, 49, 553bitr4d 300 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥)))
57563exp2 1282 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑥 ∈ (Base‘𝐾) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → (𝑞𝐴 → (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥))))))
5857imp 445 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → (𝑞𝐴 → (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥)))))
5958ralrimdv 2964 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → ∀𝑞𝐴 (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥))))
60 simpl1l 1110 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ HL)
61 simpl1 1062 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
62 simpl2 1063 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐹𝑇)
63 simpr 477 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾))
6461, 62, 63, 46syl3anc 1323 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐹𝑥) ∈ (Base‘𝐾))
65 simpl3 1064 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐺𝑇)
6661, 65, 63, 52syl3anc 1323 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐺𝑥) ∈ (Base‘𝐾))
673, 10, 11hlateq 34204 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐹𝑥) ∈ (Base‘𝐾) ∧ (𝐺𝑥) ∈ (Base‘𝐾)) → (∀𝑞𝐴 (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥)) ↔ (𝐹𝑥) = (𝐺𝑥)))
6860, 64, 66, 67syl3anc 1323 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑞𝐴 (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥)) ↔ (𝐹𝑥) = (𝐺𝑥)))
6959, 68sylibd 229 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → (𝐹𝑥) = (𝐺𝑥)))
7069ralrimdva 2965 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → ∀𝑥 ∈ (Base‘𝐾)(𝐹𝑥) = (𝐺𝑥)))
71243adant3 1079 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
72 f1ofn 6105 . . . . 5 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹 Fn (Base‘𝐾))
7371, 72syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐹 Fn (Base‘𝐾))
7463adant2 1078 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
75 f1ofn 6105 . . . . 5 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺 Fn (Base‘𝐾))
7674, 75syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺 Fn (Base‘𝐾))
77 eqfnfv 6277 . . . 4 ((𝐹 Fn (Base‘𝐾) ∧ 𝐺 Fn (Base‘𝐾)) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ (Base‘𝐾)(𝐹𝑥) = (𝐺𝑥)))
7873, 76, 77syl2anc 692 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ (Base‘𝐾)(𝐹𝑥) = (𝐺𝑥)))
7970, 78sylibrd 249 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → 𝐹 = 𝐺))
80 fveq1 6157 . . 3 (𝐹 = 𝐺 → (𝐹𝑝) = (𝐺𝑝))
8180ralrimivw 2963 . 2 (𝐹 = 𝐺 → ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝))
8279, 81impbid1 215 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2908   class class class wbr 4623  ccnv 5083   Fn wfn 5852  1-1-ontowf1o 5856  cfv 5857  Basecbs 15800  lecple 15888  Atomscatm 34069  HLchlt 34156  LHypclh 34789  LAutclaut 34790  LTrncltrn 34906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-map 7819  df-preset 16868  df-poset 16886  df-plt 16898  df-lub 16914  df-glb 16915  df-join 16916  df-meet 16917  df-p0 16979  df-lat 16986  df-clat 17048  df-oposet 33982  df-ol 33984  df-oml 33985  df-covers 34072  df-ats 34073  df-atl 34104  df-cvlat 34128  df-hlat 34157  df-lhyp 34793  df-laut 34794  df-ldil 34909  df-ltrn 34910
This theorem is referenced by:  ltrneq  34954  cdlemd  35013
  Copyright terms: Public domain W3C validator