MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvfv1 Structured version   Visualization version   GIF version

Theorem f1ocnvfv1 6487
Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfv1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (𝐹‘(𝐹𝐶)) = 𝐶)

Proof of Theorem f1ocnvfv1
StepHypRef Expression
1 f1ococnv1 6124 . . . 4 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
21fveq1d 6152 . . 3 (𝐹:𝐴1-1-onto𝐵 → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶))
32adantr 481 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶))
4 f1of 6096 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
5 fvco3 6233 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
64, 5sylan 488 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
7 fvresi 6394 . . 3 (𝐶𝐴 → (( I ↾ 𝐴)‘𝐶) = 𝐶)
87adantl 482 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (( I ↾ 𝐴)‘𝐶) = 𝐶)
93, 6, 83eqtr3d 2668 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (𝐹‘(𝐹𝐶)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992   I cid 4989  ccnv 5078  cres 5081  ccom 5083  wf 5846  1-1-ontowf1o 5849  cfv 5850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858
This theorem is referenced by:  f1ocnvfv  6489  wemapwe  8539  fseqenlem2  8793  acndom  8819  isf34lem5  9145  axcc3  9205  pwfseqlem1  9425  hashdom  13105  fz1isolem  13180  cnrecnv  13834  sadcadd  15099  sadadd2  15101  invinv  16346  catcisolem  16672  mhmf1o  17261  srngnvl  18772  mdetleib2  20308  2ndcdisj  21164  cnheiborlem  22656  iunmbl2  23227  dvcnvlem  23638  eff1olem  24193  logef  24227  adjbdlnb  28783  cnvbrabra  28811  fzto1stinvn  29631  madjusmdetlem1  29667  tpr2rico  29732  esumiun  29929  lautj  34845  lautm  34846  ldilcnv  34867  ltrneq2  34900  trlcnv  34918  diaocN  35880  dihcnvid1  36027  dochocss  36121  mapdcnvid1N  36409
  Copyright terms: Public domain W3C validator