MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem5 Structured version   Visualization version   GIF version

Theorem mdetunilem5 20341
Description: Lemma for mdetuni 20347. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetunilem5.ph (𝜓𝜑)
mdetunilem5.e (𝜓𝐸𝑁)
mdetunilem5.fgh ((𝜓𝑎𝑁𝑏𝑁) → (𝐹𝐾𝐺𝐾𝐻𝐾))
Assertion
Ref Expression
mdetunilem5 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤   𝑥,𝐹,𝑦,𝑧,𝑤   𝑥,𝐺,𝑦,𝑧,𝑤   𝑥,𝐻,𝑦,𝑧,𝑤   𝜓,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝐸,𝑎,𝑏
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   𝐹(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐻(𝑎,𝑏)

Proof of Theorem mdetunilem5
StepHypRef Expression
1 mdetunilem5.ph . 2 (𝜓𝜑)
2 mdetuni.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 mdetuni.k . . 3 𝐾 = (Base‘𝑅)
4 mdetuni.b . . 3 𝐵 = (Base‘𝐴)
5 mdetuni.n . . . 4 (𝜑𝑁 ∈ Fin)
61, 5syl 17 . . 3 (𝜓𝑁 ∈ Fin)
7 mdetuni.r . . . 4 (𝜑𝑅 ∈ Ring)
81, 7syl 17 . . 3 (𝜓𝑅 ∈ Ring)
983ad2ant1 1080 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → 𝑅 ∈ Ring)
10 mdetunilem5.fgh . . . . . 6 ((𝜓𝑎𝑁𝑏𝑁) → (𝐹𝐾𝐺𝐾𝐻𝐾))
1110simp1d 1071 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → 𝐹𝐾)
1210simp2d 1072 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → 𝐺𝐾)
13 mdetuni.pg . . . . . 6 + = (+g𝑅)
143, 13ringacl 18499 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐾) → (𝐹 + 𝐺) ∈ 𝐾)
159, 11, 12, 14syl3anc 1323 . . . 4 ((𝜓𝑎𝑁𝑏𝑁) → (𝐹 + 𝐺) ∈ 𝐾)
1610simp3d 1073 . . . 4 ((𝜓𝑎𝑁𝑏𝑁) → 𝐻𝐾)
1715, 16ifcld 4103 . . 3 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) ∈ 𝐾)
182, 3, 4, 6, 8, 17matbas2d 20148 . 2 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ∈ 𝐵)
1911, 16ifcld 4103 . . 3 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐹, 𝐻) ∈ 𝐾)
202, 3, 4, 6, 8, 19matbas2d 20148 . 2 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∈ 𝐵)
2112, 16ifcld 4103 . . 3 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, 𝐻) ∈ 𝐾)
222, 3, 4, 6, 8, 21matbas2d 20148 . 2 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ∈ 𝐵)
23 mdetunilem5.e . 2 (𝜓𝐸𝑁)
24 snex 4869 . . . . . . 7 {𝐸} ∈ V
2524a1i 11 . . . . . 6 (𝜓 → {𝐸} ∈ V)
2623snssd 4309 . . . . . . . . 9 (𝜓 → {𝐸} ⊆ 𝑁)
27263ad2ant1 1080 . . . . . . . 8 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → {𝐸} ⊆ 𝑁)
28 simp2 1060 . . . . . . . 8 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝑎 ∈ {𝐸})
2927, 28sseldd 3584 . . . . . . 7 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝑎𝑁)
3029, 11syld3an2 1370 . . . . . 6 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝐹𝐾)
3129, 12syld3an2 1370 . . . . . 6 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝐺𝐾)
32 eqidd 2622 . . . . . 6 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐹))
33 eqidd 2622 . . . . . 6 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺))
3425, 6, 30, 31, 32, 33offval22 7198 . . . . 5 (𝜓 → ((𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) ∘𝑓 + (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ (𝐹 + 𝐺)))
3534eqcomd 2627 . . . 4 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ (𝐹 + 𝐺)) = ((𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) ∘𝑓 + (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺)))
36 mpt2snif 6707 . . . 4 (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ (𝐹 + 𝐺))
37 mpt2snif 6707 . . . . 5 (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐹)
38 mpt2snif 6707 . . . . 5 (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺)
3937, 38oveq12i 6616 . . . 4 ((𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘𝑓 + (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))) = ((𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) ∘𝑓 + (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺))
4035, 36, 393eqtr4g 2680 . . 3 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = ((𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘𝑓 + (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))))
41 ssid 3603 . . . 4 𝑁𝑁
42 resmpt2 6711 . . . 4 (({𝐸} ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)))
4326, 41, 42sylancl 693 . . 3 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)))
44 resmpt2 6711 . . . . 5 (({𝐸} ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
4526, 41, 44sylancl 693 . . . 4 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
46 resmpt2 6711 . . . . 5 (({𝐸} ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
4726, 41, 46sylancl 693 . . . 4 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
4845, 47oveq12d 6622 . . 3 (𝜓 → (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘𝑓 + ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁))) = ((𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘𝑓 + (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))))
4940, 43, 483eqtr4d 2665 . 2 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘𝑓 + ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁))))
50 eldifsni 4289 . . . . . . 7 (𝑎 ∈ (𝑁 ∖ {𝐸}) → 𝑎𝐸)
51503ad2ant2 1081 . . . . . 6 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → 𝑎𝐸)
5251neneqd 2795 . . . . 5 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → ¬ 𝑎 = 𝐸)
53 iffalse 4067 . . . . . 6 𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = 𝐻)
54 iffalse 4067 . . . . . 6 𝑎 = 𝐸 → if(𝑎 = 𝐸, 𝐹, 𝐻) = 𝐻)
5553, 54eqtr4d 2658 . . . . 5 𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐹, 𝐻))
5652, 55syl 17 . . . 4 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐹, 𝐻))
5756mpt2eq3dva 6672 . . 3 (𝜓 → (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
58 difss 3715 . . . 4 (𝑁 ∖ {𝐸}) ⊆ 𝑁
59 resmpt2 6711 . . . 4 (((𝑁 ∖ {𝐸}) ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)))
6058, 41, 59mp2an 707 . . 3 ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))
61 resmpt2 6711 . . . 4 (((𝑁 ∖ {𝐸}) ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
6258, 41, 61mp2an 707 . . 3 ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))
6357, 60, 623eqtr4g 2680 . 2 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)))
64 iffalse 4067 . . . . . 6 𝑎 = 𝐸 → if(𝑎 = 𝐸, 𝐺, 𝐻) = 𝐻)
6553, 64eqtr4d 2658 . . . . 5 𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐺, 𝐻))
6652, 65syl 17 . . . 4 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐺, 𝐻))
6766mpt2eq3dva 6672 . . 3 (𝜓 → (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
68 resmpt2 6711 . . . 4 (((𝑁 ∖ {𝐸}) ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
6958, 41, 68mp2an 707 . . 3 ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))
7067, 60, 693eqtr4g 2680 . 2 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)))
71 mdetuni.0g . . 3 0 = (0g𝑅)
72 mdetuni.1r . . 3 1 = (1r𝑅)
73 mdetuni.tg . . 3 · = (.r𝑅)
74 mdetuni.ff . . 3 (𝜑𝐷:𝐵𝐾)
75 mdetuni.al . . 3 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
76 mdetuni.li . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
77 mdetuni.sc . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
782, 4, 3, 71, 72, 13, 73, 5, 7, 74, 75, 76, 77mdetunilem3 20339 . 2 (((𝜑 ∧ (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ∈ 𝐵 ∧ (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∈ 𝐵) ∧ ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ∈ 𝐵𝐸𝑁 ∧ ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘𝑓 + ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)))) ∧ (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) ∧ ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))))
791, 18, 20, 22, 23, 49, 63, 70, 78syl332anc 1354 1 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  Vcvv 3186  cdif 3552  wss 3555  ifcif 4058  {csn 4148   × cxp 5072  cres 5076  wf 5843  cfv 5847  (class class class)co 6604  cmpt2 6606  𝑓 cof 6848  Fincfn 7899  Basecbs 15781  +gcplusg 15862  .rcmulr 15863  0gc0g 16021  1rcur 18422  Ringcrg 18468   Mat cmat 20132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-ot 4157  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-hom 15887  df-cco 15888  df-0g 16023  df-prds 16029  df-pws 16031  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-ring 18470  df-sra 19091  df-rgmod 19092  df-dsmm 19995  df-frlm 20010  df-mat 20133
This theorem is referenced by:  mdetunilem6  20342
  Copyright terms: Public domain W3C validator