Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monoord2xrv Structured version   Visualization version   GIF version

Theorem monoord2xrv 41780
Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
monoord2xrv.n (𝜑𝑁 ∈ (ℤ𝑀))
monoord2xrv.x ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
monoord2xrv.l ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
Assertion
Ref Expression
monoord2xrv (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoord2xrv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 monoord2xrv.n . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 monoord2xrv.x . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
32xnegcld 12694 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → -𝑒(𝐹𝑘) ∈ ℝ*)
43fmpttd 6879 . . . . 5 (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘)):(𝑀...𝑁)⟶ℝ*)
54ffvelrnda 6851 . . . 4 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) ∈ ℝ*)
6 monoord2xrv.l . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
76ralrimiva 3182 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
8 fvoveq1 7179 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
9 fveq2 6670 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
108, 9breq12d 5079 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛)))
1110cbvralvw 3449 . . . . . . . 8 (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
127, 11sylib 220 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
1312r19.21bi 3208 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
14 fzp1elp1 12961 . . . . . . . . . 10 (𝑛 ∈ (𝑀...(𝑁 − 1)) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
1514adantl 484 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
16 eluzelz 12254 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
171, 16syl 17 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
1817zcnd 12089 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
19 ax-1cn 10595 . . . . . . . . . . . 12 1 ∈ ℂ
20 npcan 10895 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
2118, 19, 20sylancl 588 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
2221oveq2d 7172 . . . . . . . . . 10 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
2322adantr 483 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
2415, 23eleqtrd 2915 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...𝑁))
252ralrimiva 3182 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ*)
2625adantr 483 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ*)
27 fveq2 6670 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
2827eleq1d 2897 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ*))
2928rspcv 3618 . . . . . . . 8 ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹‘(𝑛 + 1)) ∈ ℝ*))
3024, 26, 29sylc 65 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ∈ ℝ*)
31 fzssp1 12951 . . . . . . . . . 10 (𝑀...(𝑁 − 1)) ⊆ (𝑀...((𝑁 − 1) + 1))
3231, 22sseqtrid 4019 . . . . . . . . 9 (𝜑 → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁))
3332sselda 3967 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (𝑀...𝑁))
349eleq1d 2897 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑛) ∈ ℝ*))
3534rspcv 3618 . . . . . . . 8 (𝑛 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑛) ∈ ℝ*))
3633, 26, 35sylc 65 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) ∈ ℝ*)
37 xleneg 12612 . . . . . . 7 (((𝐹‘(𝑛 + 1)) ∈ ℝ* ∧ (𝐹𝑛) ∈ ℝ*) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛) ↔ -𝑒(𝐹𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1))))
3830, 36, 37syl2anc 586 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛) ↔ -𝑒(𝐹𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1))))
3913, 38mpbid 234 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -𝑒(𝐹𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1)))
409xnegeqd 41731 . . . . . . 7 (𝑘 = 𝑛 → -𝑒(𝐹𝑘) = -𝑒(𝐹𝑛))
41 eqid 2821 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘)) = (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))
42 xnegex 12602 . . . . . . 7 -𝑒(𝐹𝑛) ∈ V
4340, 41, 42fvmpt 6768 . . . . . 6 (𝑛 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) = -𝑒(𝐹𝑛))
4433, 43syl 17 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) = -𝑒(𝐹𝑛))
4527xnegeqd 41731 . . . . . . 7 (𝑘 = (𝑛 + 1) → -𝑒(𝐹𝑘) = -𝑒(𝐹‘(𝑛 + 1)))
46 xnegex 12602 . . . . . . 7 -𝑒(𝐹‘(𝑛 + 1)) ∈ V
4745, 41, 46fvmpt 6768 . . . . . 6 ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘(𝑛 + 1)) = -𝑒(𝐹‘(𝑛 + 1)))
4824, 47syl 17 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘(𝑛 + 1)) = -𝑒(𝐹‘(𝑛 + 1)))
4939, 44, 483brtr4d 5098 . . . 4 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘(𝑛 + 1)))
501, 5, 49monoordxrv 41778 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑀) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑁))
51 eluzfz1 12915 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
521, 51syl 17 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
53 fveq2 6670 . . . . . 6 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
5453xnegeqd 41731 . . . . 5 (𝑘 = 𝑀 → -𝑒(𝐹𝑘) = -𝑒(𝐹𝑀))
55 xnegex 12602 . . . . 5 -𝑒(𝐹𝑀) ∈ V
5654, 41, 55fvmpt 6768 . . . 4 (𝑀 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑀) = -𝑒(𝐹𝑀))
5752, 56syl 17 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑀) = -𝑒(𝐹𝑀))
58 eluzfz2 12916 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
591, 58syl 17 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
60 fveq2 6670 . . . . . 6 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
6160xnegeqd 41731 . . . . 5 (𝑘 = 𝑁 → -𝑒(𝐹𝑘) = -𝑒(𝐹𝑁))
62 xnegex 12602 . . . . 5 -𝑒(𝐹𝑁) ∈ V
6361, 41, 62fvmpt 6768 . . . 4 (𝑁 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑁) = -𝑒(𝐹𝑁))
6459, 63syl 17 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑁) = -𝑒(𝐹𝑁))
6550, 57, 643brtr3d 5097 . 2 (𝜑 → -𝑒(𝐹𝑀) ≤ -𝑒(𝐹𝑁))
6660eleq1d 2897 . . . . 5 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑁) ∈ ℝ*))
6766rspcv 3618 . . . 4 (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑁) ∈ ℝ*))
6859, 25, 67sylc 65 . . 3 (𝜑 → (𝐹𝑁) ∈ ℝ*)
6953eleq1d 2897 . . . . 5 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑀) ∈ ℝ*))
7069rspcv 3618 . . . 4 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑀) ∈ ℝ*))
7152, 25, 70sylc 65 . . 3 (𝜑 → (𝐹𝑀) ∈ ℝ*)
72 xleneg 12612 . . 3 (((𝐹𝑁) ∈ ℝ* ∧ (𝐹𝑀) ∈ ℝ*) → ((𝐹𝑁) ≤ (𝐹𝑀) ↔ -𝑒(𝐹𝑀) ≤ -𝑒(𝐹𝑁)))
7368, 71, 72syl2anc 586 . 2 (𝜑 → ((𝐹𝑁) ≤ (𝐹𝑀) ↔ -𝑒(𝐹𝑀) ≤ -𝑒(𝐹𝑁)))
7465, 73mpbird 259 1 (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  cc 10535  1c1 10538   + caddc 10540  *cxr 10674  cle 10676  cmin 10870  cz 11982  cuz 12244  -𝑒cxne 12505  ...cfz 12893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-xneg 12508  df-fz 12894
This theorem is referenced by:  monoord2xr  41781
  Copyright terms: Public domain W3C validator