MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul2lt0bi Structured version   Visualization version   GIF version

Theorem mul2lt0bi 12129
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
mul2lt0.1 (𝜑𝐴 ∈ ℝ)
mul2lt0.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
mul2lt0bi (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0))))

Proof of Theorem mul2lt0bi
StepHypRef Expression
1 mul2lt0.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
2 mul2lt0.2 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
31, 2remulcld 10262 . . . . . . . 8 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
4 0red 10233 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
53, 4ltnled 10376 . . . . . . 7 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ¬ 0 ≤ (𝐴 · 𝐵)))
61adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ)
72adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
8 simprl 811 . . . . . . . . . 10 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐴)
9 simprr 813 . . . . . . . . . 10 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐵)
106, 7, 8, 9mulge0d 10796 . . . . . . . . 9 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
1110ex 449 . . . . . . . 8 (𝜑 → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵)))
1211con3d 148 . . . . . . 7 (𝜑 → (¬ 0 ≤ (𝐴 · 𝐵) → ¬ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
135, 12sylbid 230 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) < 0 → ¬ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
14 ianor 510 . . . . . 6 (¬ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ↔ (¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵))
1513, 14syl6ib 241 . . . . 5 (𝜑 → ((𝐴 · 𝐵) < 0 → (¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵)))
161, 4ltnled 10376 . . . . . 6 (𝜑 → (𝐴 < 0 ↔ ¬ 0 ≤ 𝐴))
172, 4ltnled 10376 . . . . . 6 (𝜑 → (𝐵 < 0 ↔ ¬ 0 ≤ 𝐵))
1816, 17orbi12d 748 . . . . 5 (𝜑 → ((𝐴 < 0 ∨ 𝐵 < 0) ↔ (¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵)))
1915, 18sylibrd 249 . . . 4 (𝜑 → ((𝐴 · 𝐵) < 0 → (𝐴 < 0 ∨ 𝐵 < 0)))
2019imp 444 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 < 0 ∨ 𝐵 < 0))
21 simpr 479 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐴 < 0)
221adantr 472 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ)
232adantr 472 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℝ)
24 simpr 479 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 · 𝐵) < 0)
2522, 23, 24mul2lt0llt0 12127 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 0 < 𝐵)
2621, 25jca 555 . . . . 5 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → (𝐴 < 0 ∧ 0 < 𝐵))
2726ex 449 . . . 4 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 < 0 → (𝐴 < 0 ∧ 0 < 𝐵)))
2822, 23, 24mul2lt0rlt0 12125 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐵 < 0) → 0 < 𝐴)
29 simpr 479 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐵 < 0) → 𝐵 < 0)
3028, 29jca 555 . . . . 5 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐵 < 0) → (0 < 𝐴𝐵 < 0))
3130ex 449 . . . 4 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐵 < 0 → (0 < 𝐴𝐵 < 0)))
3227, 31orim12d 919 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝐴 < 0 ∨ 𝐵 < 0) → ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0))))
3320, 32mpd 15 . 2 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0)))
341adantr 472 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐴 ∈ ℝ)
35 0red 10233 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 0 ∈ ℝ)
362adantr 472 . . . . . 6 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ)
37 simprr 813 . . . . . 6 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 0 < 𝐵)
3836, 37elrpd 12062 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ+)
39 simprl 811 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐴 < 0)
4034, 35, 38, 39ltmul1dd 12120 . . . 4 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < (0 · 𝐵))
4136recnd 10260 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ)
4241mul02d 10426 . . . 4 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → (0 · 𝐵) = 0)
4340, 42breqtrd 4830 . . 3 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < 0)
442adantr 472 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐵 ∈ ℝ)
45 0red 10233 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 0 ∈ ℝ)
461adantr 472 . . . . . 6 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐴 ∈ ℝ)
47 simprl 811 . . . . . 6 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 0 < 𝐴)
4846, 47elrpd 12062 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐴 ∈ ℝ+)
49 simprr 813 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐵 < 0)
5044, 45, 48, 49ltmul2dd 12121 . . . 4 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → (𝐴 · 𝐵) < (𝐴 · 0))
5146recnd 10260 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐴 ∈ ℂ)
5251mul01d 10427 . . . 4 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → (𝐴 · 0) = 0)
5350, 52breqtrd 4830 . . 3 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → (𝐴 · 𝐵) < 0)
5443, 53jaodan 861 . 2 ((𝜑 ∧ ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0))) → (𝐴 · 𝐵) < 0)
5533, 54impbida 913 1 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  wcel 2139   class class class wbr 4804  (class class class)co 6813  cr 10127  0cc0 10128   · cmul 10133   < clt 10266  cle 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-rp 12026
This theorem is referenced by:  ztprmneprm  42635
  Copyright terms: Public domain W3C validator