Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofdivcan4 Structured version   Visualization version   GIF version

Theorem ofdivcan4 38008
Description: Function analogue of divcan4 10656. (Contributed by Steve Rodriguez, 4-Nov-2015.)
Assertion
Ref Expression
ofdivcan4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → ((𝐹𝑓 · 𝐺) ∘𝑓 / 𝐺) = 𝐹)

Proof of Theorem ofdivcan4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1059 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐴𝑉)
2 simp2 1060 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐹:𝐴⟶ℂ)
3 ffn 6002 . . . 4 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
42, 3syl 17 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐹 Fn 𝐴)
5 simp3 1061 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐺:𝐴⟶(ℂ ∖ {0}))
6 ffn 6002 . . . 4 (𝐺:𝐴⟶(ℂ ∖ {0}) → 𝐺 Fn 𝐴)
75, 6syl 17 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐺 Fn 𝐴)
8 inidm 3800 . . 3 (𝐴𝐴) = 𝐴
94, 7, 1, 1, 8offn 6861 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹𝑓 · 𝐺) Fn 𝐴)
10 eqidd 2622 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
11 eqidd 2622 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
124, 7, 1, 1, 8, 10, 11ofval 6859 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → ((𝐹𝑓 · 𝐺)‘𝑥) = ((𝐹𝑥) · (𝐺𝑥)))
13 ffvelrn 6313 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
142, 13sylan 488 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
15 ffvelrn 6313 . . . . 5 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ (ℂ ∖ {0}))
16 eldifsn 4287 . . . . 5 ((𝐺𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
1715, 16sylib 208 . . . 4 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
185, 17sylan 488 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
19 divcan4 10656 . . . 4 (((𝐹𝑥) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0) → (((𝐹𝑥) · (𝐺𝑥)) / (𝐺𝑥)) = (𝐹𝑥))
20193expb 1263 . . 3 (((𝐹𝑥) ∈ ℂ ∧ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0)) → (((𝐹𝑥) · (𝐺𝑥)) / (𝐺𝑥)) = (𝐹𝑥))
2114, 18, 20syl2anc 692 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (((𝐹𝑥) · (𝐺𝑥)) / (𝐺𝑥)) = (𝐹𝑥))
221, 9, 7, 4, 12, 11, 21offveq 6871 1 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → ((𝐹𝑓 · 𝐺) ∘𝑓 / 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cdif 3552  {csn 4148   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  𝑓 cof 6848  cc 9878  0cc0 9880   · cmul 9885   / cdiv 10628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629
This theorem is referenced by:  expgrowth  38016  binomcxplemnotnn0  38037
  Copyright terms: Public domain W3C validator